98%
921
2 minutes
20
Stomatal closure during drought inhibits carbon uptake and may reduce a tree's defensive capacity. Limited carbon availability during drought may increase a tree's mortality risk, particularly if drought constrains trees' capacity to rapidly produce defenses during biotic attack. We parameterized a new model of conifer defense using physiological data on carbon reserves and chemical defenses before and after a simulated bark beetle attack in mature Pinus edulis under experimental drought. Attack was simulated using inoculations with a consistent bluestain fungus (Ophiostoma sp.) of Ips confusus, the main bark beetle colonizing this tree, to induce a defensive response. Trees with more carbon reserves produced more defenses but measured phloem carbon reserves only accounted for c. 23% of the induced defensive response. Our model predicted universal mortality if local reserves alone supported defense production, suggesting substantial remobilization and transport of stored resin or carbon reserves to the inoculation site. Our results show that de novo terpene synthesis represents only a fraction of the total measured phloem terpenes in P. edulis following fungal inoculation. Without direct attribution of phloem terpene concentrations to available carbon, many studies may be overestimating the scale and importance of de novo terpene synthesis in a tree's induced defense response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.20051 | DOI Listing |
Infect Control Hosp Epidemiol
September 2025
Case Western Reserve University School of Medicine, Cleveland, OH, USA.
In an observational study, healthcare personnel often entered contact precautions rooms without contacting patients or the environment. An approach requiring gloves and gowns based on actual contacts rather than for all room entries would reduce personal protective equipment donning and doffing time, cost, and carbon footprint by more than half.
View Article and Find Full Text PDFIntensive Care Med Exp
September 2025
Critical Care Division, Integrated Hospital Care Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates.
Background: The relationship between carbon dioxide pressures (PCO) and contents (CCO) is linked to the Haldane effect. Nevertheless, under shock conditions, hydrogen ion accumulation might strongly influence the discrepancies between PCO and CCO. This study aims to evaluate the impact of hydrogen ion accumulation and hemoglobin oxygen saturation (Haldane effect) on PCO:CCO relationships during induction and resuscitation of endotoxemic shock.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Department of Nutritional Sciences, University of Wisconsin-Madison;
The retinol isotope dilution (RID) test is the most sensitive method to assess vitamin A status by estimating total liver reserves, considered the reference standard. For gas chromatography-combustion-isotope ratio mass spectrometry detection, C is added to the retinol moiety. The synthetic procedure for C-retinyl acetate begins with the naturally occurring β-ionone.
View Article and Find Full Text PDFNew Phytol
September 2025
Laboratory of Tree Ring Research, University of Arizona, Tucson, AZ, 85721, USA.
Trees harbor large stores of nonstructural carbohydrates, some of which are quite old (> 10 yr), yet we know little of how these older stores may be used for woody growth. Crucially, the use of old carbohydrates during cellulose biosynthesis could confound climate reconstructions that rely on tree ring stable isotope ratios. We analyzed tree-ring cellulose ΔC and δC in earlywood of two pine species from montane forests in western North America using tree rings produced during the radiocarbon bomb pulse (1966-1980).
View Article and Find Full Text PDFPlant Cell Environ
September 2025
Max-Planck Institute for Biogeochemistry, Jena, Germany.
The time elapsed between carbon fixation into nonstructural carbohydrates (NSC) and their use to grow tree structural tissues can be estimated by C ages. Reported C-ages indicate that NSC used to grow root tissues (growth NSC) can vary from < 1 year to decades. To understand the controls of this variability, we compared C-ages of leaf, branch, and root tissues from two conifers (Larix decidua, Pinus mugo) in a control valley site and an alpine treeline ecotone where low temperatures restrict tree growth.
View Article and Find Full Text PDF