Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chromium and arsenic are two of the most problematic water pollutants due to their high toxicity and prevalence in various water streams. While adsorption and ion-exchange processes have been applied for the efficient removal of numerous toxic contaminants, including heavy metals, from water, these technologies display relatively low overall performances and stabilities for the remediation of chromium and arsenic oxyanions. This work presents the use of polyol-functionalized porous aromatic framework (PAF) adsorbent materials that use chelation, ion-exchange, redox activity, and hydrogen-bonding interactions for the highly selective capture of chromium and arsenic from water. The chromium and arsenic binding mechanisms within these materials are probed using an array of characterization techniques, including X-ray absorption and X-ray photoelectron spectroscopies. Adsorption studies reveal that the functionalized porous aromatic frameworks (PAFs) achieve selective, near-instantaneous (reaching equilibrium capacity within 10 s), and high-capacity (2.5 mmol/g) binding performances owing to their targeted chemistries, high porosities, and high functional group loadings. Cycling tests further demonstrate that the top-performing PAF material can be recycled using mild acid and base washes without any measurable performance loss over at least ten adsorption-desorption cycles. Finally, we establish chemical design principles enabling the selective removal of chromium, arsenic, and boron from water. To achieve this, we show that PAFs appended with analogous binding groups exhibit differences in adsorption behavior, revealing the importance of binding group length and chemical identity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363125PMC
http://dx.doi.org/10.1021/jacs.4c05728DOI Listing

Publication Analysis

Top Keywords

chromium arsenic
24
porous aromatic
12
removal chromium
8
arsenic water
8
polyol-functionalized porous
8
aromatic frameworks
8
arsenic
6
water
6
chromium
5
water polyol-functionalized
4

Similar Publications

This exploratory study surveyed seven contaminated brownfields and Superfund sites in Southern California to identify locally adapted species tolerant of mixed organic and metal contamination under arid and semi-arid conditions. Five novel native plants, including Brickellia californica, Baccharis salicifolia, Baccharis sarothroides, Eriogonum fasciculatum, and Heterotheca grandiflora were identified as hyperaccumulators of copper (Cu), alongside a non-native species from the Asteraceae family, Helminthotheca echioides. Additional metal-accumulating plants (including native plants) for lead (Pb), chromium (Cr), arsenic (As), and nickel (Ni) were identified, and warrant further evaluation for their phytoremediation potential.

View Article and Find Full Text PDF

Bioaccumulation of metals and metalloids in marine environments poses a significant risk to both human and aquatic health, with seasonal fluctuations substantially influencing its dynamics and magnitude. This study investigated the impact of metals and metalloids exposure on the health of Wallago attu (Wallago catfish) and Catla catla (Indian carp) inhabiting the Head Siphon, Mailsi, Pakistan. This study involved the seasonal (May 2022, October 2022, April 2023) assessment of physicochemical properties and the concentrations of several metals and metalloids-copper (Cu), chromium (Cr), arsenic (As), cadmium (Cd), nickel (Ni), zinc (Zn), and iron (Fe)-in water samples.

View Article and Find Full Text PDF

This study aimed to assess the environmental and health risks of heavy metal contamination from e-waste recycling in Lahore, Pakistan. Surface soil (0-15 cm) samples were collected from recycling facilities, and heavy metal concentrations were measured using atomic absorption spectrophotometry. The mean concentrations (mg/kg) of Cadmium (Cd) (5.

View Article and Find Full Text PDF

Artisanal gold mining in Nigeria's Ile-Ife-Ilesha schist belt has triggered an unprecedented heavy metal contamination crisis, posing severe environmental and public health risks. Despite increasing reports of pollution, comprehensive geospatial and multivariate assessments of contamination patterns and sources remain limited, creating a significant knowledge gap in understanding heavy metal dynamics in the region. This study assessed the extent, sources, and health implications of heavy metal pollution in the Ile-Ife-Ilesha mining corridor using integrated geospatial and multivariate statistical analyses.

View Article and Find Full Text PDF

The aim of this study was to investigate oxidative stress markers in patients with embedded fragments (PEF) using thiol-disulfide homeostasis and ischemia-modified albumin (IMA). The study consisted of a PEF group and a control group. Blood or urine metal concentrations were determined using inductively coupled plasma mass spectrometry (ICP-MS).

View Article and Find Full Text PDF