Unlocking the mind-gut connection: Impact of human microbiome on cognition.

Cell Host Microbe

Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This perspective explores the current understanding of the gut microbiota's impact on cognitive function in apparently healthy humans and in individuals with metabolic disease. We discuss how alterations in gut microbiota can influence cognitive processes, focusing not only on bacterial composition but also on often overlooked components of the gut microbiota, such as bacteriophages and eukaryotes, as well as microbial functionality. We examine the mechanisms through which gut microbes might communicate with the central nervous system, highlighting the complexity of these interactions. We provide a comprehensive overview of the emerging field of microbiota-gut-brain interactions and its significance for cognitive health. Additionally, we summarize novel therapeutic strategies designed to promote cognitive resilience and reduce the risk of cognitive disorders, focusing on interventions that target the gut microbiota. An in-depth understanding of the microbiome-brain axis is imperative for developing innovative treatments aimed at improving cognitive health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2024.07.019DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
cognitive health
8
cognitive
6
gut
5
unlocking mind-gut
4
mind-gut connection
4
connection impact
4
impact human
4
human microbiome
4
microbiome cognition
4

Similar Publications

Pomegranate (Punica granatum L) is a rich source of bioactive compounds, including punicalagin, ellagic acid, anthocyanins, and urolithins, which contribute to its broad pharmacological potential. This review summarizes evidence from in vitro and in vivo experiments, as well as clinical studies, highlighting pomegranate's therapeutic effects in inflammation, metabolic disorders, cancer, cardiovascular disease, neurodegeneration, microbial infections, and skin conditions. Mechanistic insights show modulation of pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), alpha serine/threonine-protein kinase (AKT1), and nuclear factor erythroid 2-related factor 2 (Nrf2).

View Article and Find Full Text PDF

Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.

View Article and Find Full Text PDF

Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.

View Article and Find Full Text PDF

American black bear (Ursus americanus) as a potential host for Campylobacter jejuni.

PLoS One

September 2025

School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America.

The Gram-negative bacterium Campylobacter jejuni is part of the commensal gut microbiota of numerous animal species and a leading cause of bacterial foodborne illness in humans. Most complete genomes of C. jejuni are from strains isolated from human clinical, poultry, and ruminant samples.

View Article and Find Full Text PDF