98%
921
2 minutes
20
infects a wide variety of crops. The () is conserved across many strains and is responsible for producing an extracellular chemical signal, leudiazen. Disruption of the gene in pv. () UMAF0158 alleviated tomato chlorosis caused by this bacterium. We showed that deletion of the entire reduced UMAF0158 population in tomato leaflets. Leudiazen restored the signaling activity of the deletion mutant at a concentration as low as 10 nM. Both the diazeniumdiolate and isobutyl groups of leudiazen are critical for this potent signaling activity. Transcriptional analysis showed that and leudiazen induce the expression of as well as an uncharacterized gene cluster, RS17235-RS17245. We found that this cluster enhances the survival of UMAF0158 in planta and is widely distributed in strains. Our results demonstrate that plays prominent roles in the virulence and growth of . The and -like signaling systems in different bacteria likely regulate diverse microbe-host interactions. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-06-24-0069-R | DOI Listing |
Haematologica
September 2025
Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD,.
Immunotherapies, including cell therapies, are effective anti-cancer agents. However, cellular product persistence can be limiting with short functional duration of activity contributing to disease relapse. A variety of manufacturing protocols are used to generate therapeutic engineered T-cells; these differ in techniques used for T-cell isolation, activation, genetic modification, and other methodology.
View Article and Find Full Text PDFHaematologica
September 2025
Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky,.
Maintaining a healthy pool of circulating red blood cells (RBCs) is essential for adequate perfusion, as even minor changes in the population can impair oxygen delivery, resulting in serious health complications including tissue ischemia and organ dysfunction. This responsibility largely falls to specialized macrophages in the spleen, known as red pulp macrophages, which efficiently take up and recycle damaged RBCs. However, questions remain regarding how these macrophages are acutely activated to accommodate increased demand.
View Article and Find Full Text PDFJ Cell Sci
September 2025
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
The microtubule motor dynein-2 is responsible for retrograde intraflagellar transport (IFT), a process critical for cilia assembly and cilium-dependent signaling. Mutations in genes encoding dynein-2 subunits interfere with ciliogenesis and are among the most frequent causes of skeletal ciliopathies. Despite its importance, little is known regarding dynein-2 assembly and regulation.
View Article and Find Full Text PDFAdv Wound Care (New Rochelle)
September 2025
Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China.
Wound healing is a complex, tightly regulated process involving a range of enzymes, growth factors, and cytokines that coordinate cellular activities essential for tissue repair and wound closure. However, in cases of extensive or severe injury, the intrinsic repair mechanisms are often insufficient, underscoring the need for advanced therapeutic strategies to accelerate healing and minimize scar formation. Electrically conductive hydrogels (ECHs), combining the advantageous properties of hydrogels with the physiological and electrochemical characteristics of conductive materials, present a safer and more convenient alternative to traditional electrode-based electrical stimulation (ES) for treating chronic and nonhealing wounds.
View Article and Find Full Text PDFACS Sens
September 2025
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
High-fidelity biosignal monitoring is essential for daily health tracking and the diagnosis of chronic diseases. However, developing bioelectrodes capable of withstanding repeated use and mechanical deformation on wet tissue surfaces remains a significant challenge. Here, we present a robust and ultrathin bioelectrode (RUB), featuring a mechanically heterogeneous architecture and a thickness of ∼3 μm.
View Article and Find Full Text PDF