Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Severe burn injuries are defined by a prolonged hypermetabolic response characterized by increases in resting energy expenditure, systemic catabolism, and multi-organ dysfunction. The sustained elevation of catecholamines following a burn injury is thought to significantly contribute to this hypermetabolic response, leading to changes in adipose tissue such as increased lipolysis and the browning of subcutaneous white adipose tissue (WAT). Failure to mitigate these adverse changes within the adipose tissue has been shown to exacerbate the post-burn hypermetabolic response and lead to negative outcomes. Propranolol, a non-selective β-blocker, has been clinically administered to improve outcomes of pediatric and adult burn patients, but there is inadequate knowledge of its effects on the distinct adipose tissue depots. In this study, we investigated the adipose depot-specific alterations that occur in response to burn injury. Moreover, we explored the therapeutic effects of β-adrenoceptor blockade via the drug propranolol in attenuating these burn-induced pathophysiological changes within the different fat depots. Using a murine model of thermal injury, we show that burn injury induces endoplasmic reticulum (ER) stress in the epididymal (eWAT) but not in the inguinal (iWAT) WAT depot. Conversely, burn injury induces the activation of key lipolytic pathways in both eWAT and iWAT depots. Treatment of burn mice with propranolol effectively mitigated adverse burn-induced alterations in the adipose by alleviating ER stress in the eWAT and reducing lipolysis in both depots. Furthermore, propranolol treatment in post-burn mice attenuated UCP1-mediated subcutaneous WAT browning following injury. Overall, our findings suggest that propranolol serves as an effective therapeutic intervention to mitigate the adverse changes induced by burn injury, including ER stress, lipotoxicity, and WAT browning, in both adipose tissue depots. KEY MESSAGES: Burn injury adversely affects adipose tissue metabolism via distinct changes in both visceral and subcutaneous adipose depots. Propranolol, a non-selective β-adrenergic blocker, attenuates many of the adverse adipose tissue changes mediated by burn injury.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-024-02478-wDOI Listing

Publication Analysis

Top Keywords

adipose tissue
32
burn injury
28
hypermetabolic response
12
adipose
11
burn
11
injury
9
attenuates adverse
8
adverse adipose
8
tissue
8
changes adipose
8

Similar Publications

Background: Periodontitis, a chronic inflammatory disease of tooth-supporting tissues, shows significant associations with systemic conditions like type 2 diabetes mellitus (T2DM) and obesity. These metabolic disorders share chronic inflammatory pathways that may influence periodontal disease severity. This study investigated these relationships using advanced quantifiable metrics - periodontal epithelial surface area (PESA) and periodontal inflammatory surface area (PISA).

View Article and Find Full Text PDF

[Glomangiomatosis of uncertain malignant potential: a clinicopathological and genetic analysis].

Zhonghua Bing Li Xue Za Zhi

September 2025

Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China.

To investigate the clinicopathological features, genetic characteristics, and differential diagnosis of glomangiomatosis with uncertain malignant potential. Two cases of glomangiomatosis with uncertain malignant potential were collected at Henan Provincial People's Hospital from 2013 and 2023. Immunohistochemistry and next generation sequencing (DNA-seq) were used to detect the related protein and gene variation.

View Article and Find Full Text PDF

Cardiac adipose tissue is normally present in the epicardium, but a variable amount can also be present in the myocardium, particularly in the subepicardial regions of the right ventricular anterolateral and apical regions. Pathological adipose tissue changes may occur in both ischemic (previous myocardial infarction) and nonischemic (previous myocarditis, arrhythmogenic cardiomyopathy, lipomatous hypertrophy of the interatrial septum, cardiac lipomas and liposarcomas) conditions, with or without extensive replacement-type myocardial fibrosis. Cardiac magnetic resonance is the gold standard imaging technique to characterize myocardial tissue changes and to distinguish between physiological and pathological cardiac fat deposits.

View Article and Find Full Text PDF

Fibrosis in visceral white adipose tissue (vWAT) is closely associated with tissue dysfunction and systemic metabolic disturbances in obesity. Identifying pathways amenable to drug intervention to prevent fibrotic changes in vWAT is a critical step in addressing the array of metabolic complications associated with obesity. CD9 adipose progenitors (Progs) are key drivers of vWAT fibrosis.

View Article and Find Full Text PDF

Dyslipidemia is considered a crucial risk factor for high risk of atherosclerosis and cardiovascular diseases. Cumin and coriander seeds are well-known flavoring agents that contain nutraceutical properties and appear to have beneficial health effects. A study was therefore conducted to investigate the effects of cumin and coriander seeds on body weight, abdominal fat and lipid profile in rats.

View Article and Find Full Text PDF