A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Multi-Modal Open Object Detection Model for Tomato Leaf Diseases with Strong Generalization Performance Using PDC-VLD. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Precise disease detection is crucial in modern precision agriculture, especially in ensuring the health of tomato crops and enhancing agricultural productivity and product quality. Although most existing disease detection methods have helped growers identify tomato leaf diseases to some extent, these methods typically target fixed categories. When faced with new diseases, extensive and costly manual annotation is required to retrain the dataset. To overcome these limitations, this study proposes a multimodal model PDC-VLD based on the open-vocabulary object detection (OVD) technology within the VLDet framework, which can accurately identify new tomato leaf diseases without manual annotation by using only image-text pairs. First, we developed a progressive visual transformer-convolutional pyramid module (PVT-C) that effectively extracts tomato leaf disease features and optimizes anchor box positioning using the self-supervised learning algorithm DINO, suppressing interference from irrelevant backgrounds. Then, a context feature guided module (CFG) was adopted to address the low adaptability and recognition accuracy of the model in data-scarce environments. To validate the model's effectiveness, we constructed a tomato leaf disease image dataset containing 4 base classes and 2 new categories. Experimental results show that the PDC-VLD model achieved 61.2% on the main evaluation metric , and 56.4% on , 87.7% on , 81.0% on , and 45.5% on average recall, outperforming existing OVD models. Our research provides an innovative solution for efficiently and accurately detecting new diseases, substantially reducing the need for manual annotation, and offering critical technical support and practical reference for agricultural workers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320837PMC
http://dx.doi.org/10.34133/plantphenomics.0220DOI Listing

Publication Analysis

Top Keywords

tomato leaf
20
leaf diseases
12
manual annotation
12
object detection
8
disease detection
8
identify tomato
8
leaf disease
8
tomato
6
leaf
5
diseases
5

Similar Publications