Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Precise disease detection is crucial in modern precision agriculture, especially in ensuring the health of tomato crops and enhancing agricultural productivity and product quality. Although most existing disease detection methods have helped growers identify tomato leaf diseases to some extent, these methods typically target fixed categories. When faced with new diseases, extensive and costly manual annotation is required to retrain the dataset. To overcome these limitations, this study proposes a multimodal model PDC-VLD based on the open-vocabulary object detection (OVD) technology within the VLDet framework, which can accurately identify new tomato leaf diseases without manual annotation by using only image-text pairs. First, we developed a progressive visual transformer-convolutional pyramid module (PVT-C) that effectively extracts tomato leaf disease features and optimizes anchor box positioning using the self-supervised learning algorithm DINO, suppressing interference from irrelevant backgrounds. Then, a context feature guided module (CFG) was adopted to address the low adaptability and recognition accuracy of the model in data-scarce environments. To validate the model's effectiveness, we constructed a tomato leaf disease image dataset containing 4 base classes and 2 new categories. Experimental results show that the PDC-VLD model achieved 61.2% on the main evaluation metric , and 56.4% on , 87.7% on , 81.0% on , and 45.5% on average recall, outperforming existing OVD models. Our research provides an innovative solution for efficiently and accurately detecting new diseases, substantially reducing the need for manual annotation, and offering critical technical support and practical reference for agricultural workers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320837 | PMC |
http://dx.doi.org/10.34133/plantphenomics.0220 | DOI Listing |