Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objective: Using Optical coherence tomography (OCT), we evaluated the association between peripapillary retinal nerve fiber, macular thickness, macular ganglion cell-inner plexiform layer, and drug resistance.
Methods: In this cross-sectional study, we recruited people diagnosed with epilepsy and healthy controls. People with epilepsy were further stratified as drug-resistant or non-drug-resistant based on their response to anti-seizure medications. OCT measurements were conducted, and findings in right eye were analyzed.
Results: Fifty-one drug-resistant participants, 37 non-drug-resistant, and 45 controls were enrolled. The average peripapillary retinal nerve fiber layer, ganglion cell-inner plexiform layer, and macular thickness were thinner in the epilepsy groups than in controls. The drug-resistant group had significantly lower average ganglion cell-inner plexiform layer thickness (p = 0.004) and a higher proportion of abnormal/borderline GC/IPL thickness (p = 5.40E-04) than the non-drug-resistant group. Nevertheless, no significant differences were seen between the average thickness of peripapillary retinal nerve fiber and macular thickness. The temporal sectors of these three parameters were also significantly thinner in the drug-resistant group than in the non-drug-resistant. In a multivariate regression model, drug resistance was an independent predictor of reduced ganglion cell-inner plexiform thickness (Odds ratios OR = 10.25, 95% CI 2.82 to 37.28). Increased seizure frequency (r = -0.23, p = 0.039) and a higher number of anti-seizure medications ever used (r = -0.27, p = 0.013) were negatively associated with ganglion cell-inner plexiform layer thickness.
Significance: Individuals with drug-resistant epilepsy had a consistent reduction in average ganglion cell-inner plexiform layer thickness and the temporal sector of peripapillary retinal nerve fiber layer and macular thickness. This suggests that ganglion cell-inner plexiform layer thickness could potentially serve as an indicator of the burden of drug resistance, as it correlated with reduced thickness in individuals having more frequent seizures and greater exposure to ASMs.
Plain Language Summary: In our study, we used a special tool called OCT to measure how thick the retina is in people with epilepsy and in healthy control. We found that the retina was consistently thinner in all areas for those with epilepsy compared to healthy control. Particularly, a specific layer called the ganglion cell-inner plexiform layer was a lot thinner in the group that didn't respond to medications, and this thinning was related to how often seizures occurred and how much medications were taken. Also, certain parts of the retina were thinner in the drug-resistant group.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450591 | PMC |
http://dx.doi.org/10.1002/epi4.13004 | DOI Listing |