98%
921
2 minutes
20
The microbial processes occurring in constructed wetlands (CWs) are difficult to understand owing to the complex interactions occurring between a variety of substrates, microorganisms, and plants under the given physicochemical conditions. This frequently leads to very large unexplained nitrogen losses in these systems. In continuation of our findings on Anammox contributions, our research on full-scale field CWs has suggested the significant involvement of the sulfur cycle in the conventional C-N cycle occurring in wetlands, which might closely explain the nitrogen losses in these systems. This paper explored the possibility of the sulfur-driven autotrophic denitrification (SDAD) pathway in different types of CWs, shallow and deep and passive and aerated systems, by analyzing the metagenomic bacterial communities present within these CWs. The results indicate a higher abundance of SDAD bacteria (Paracoccus and Arcobacter) in deep passive systems compared to shallow systems and presence of a large number of SDAD genera (Paracoccus, Thiobacillus, Beggiatoa, Sulfurimonas, Arcobacter, and Sulfuricurvum) in aerated CWs. The bacteria belonging to the functional category of dark oxidation of sulfur compounds were found to be enriched in deep and aerated CWs hinting at the possible role of the SDAD pathway in total nitrogen removal in these systems. As a case study, the percentage nitrogen removal through SDAD pathway was calculated to be 15-20% in aerated wetlands. The presence of autotrophic pathways for nitrogen removal can prove highly beneficial in terms of reducing sludge generation and hence reducing clogging, making aerated CWs a sustainable wastewater treatment solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-024-04102-y | DOI Listing |
Nat Rev Neurol
May 2025
Women's Brain Foundation, Basel, Switzerland.
Alzheimer disease (AD) is a life-limiting neurodegenerative disorder that disproportionately affects women. Indeed, sex and gender are emerging as crucial modifiers of diagnostic and therapeutic pathways in AD. This Review provides an overview of the interactions of sex and gender with important developments in AD and offers insights into priorities for future research to facilitate the development and implementation of personalized approaches in the shifting paradigm of AD care.
View Article and Find Full Text PDFBioresour Technol
January 2025
State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Scien
Global rubber industry, growing 4-6 % annually with 13.76 million Mt of rubber produced in 2019, significantly impacts the economy. This study explores coupling sulfate-dependent ammonium oxidation (Sulfammox) and sulfide-driven autotrophic denitrification (SDAD) within an anaerobic membrane bioreactor (AnMBR) to treat high-strength natural rubber wastewater.
View Article and Find Full Text PDFWater Res X
September 2024
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
This study explored the impact of varying nitrate to sulfide (N/S) ratios on nitrogen removal efficiency (NRE) in the sulfide-driven autotrophic denitrification and anammox (SDAD-anammox) system. Optimal nitrogen removal was observed at N/S ratios between 1.5 and 2.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China. Electronic address:
Two parallel pilot-scale reactors were operated to investigate pollutant removal performance and metabolic pathways in elemental sulfur-driven autotrophic denitrification (SDAD) process under low temperature and after addition of external electron donors. The results showed that low temperature slightly inhibited SDAD (average total nitrogen removal of ∼4.7 mg L) while supplement of sodium thiosulfate (stage 2) and sodium acetate (stage 3) enhanced denitrification and secretion of extracellular polymeric substances (EPS), leading to the average removal rate of 0.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
August 2024
Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur, 302017, India.
The microbial processes occurring in constructed wetlands (CWs) are difficult to understand owing to the complex interactions occurring between a variety of substrates, microorganisms, and plants under the given physicochemical conditions. This frequently leads to very large unexplained nitrogen losses in these systems. In continuation of our findings on Anammox contributions, our research on full-scale field CWs has suggested the significant involvement of the sulfur cycle in the conventional C-N cycle occurring in wetlands, which might closely explain the nitrogen losses in these systems.
View Article and Find Full Text PDF