98%
921
2 minutes
20
Protein aggregation is a common feature of many neurodegenerative diseases. In Huntington's disease, mutant huntingtin is the primary aggregating protein, but the aggregation of other proteins, such as TDP43, is likely to further contribute to toxicity. Moreover, mutant huntingtin is also a risk factor for TDP pathology in ALS. Despite this co-pathology of huntingtin and TDP43, it remains unknown whether these amyloidogenic proteins directly interact with each other. Using a combination of biophysical methods, we show that the aggregation-prone regions of both proteins, huntingtin exon-1 (Httex1) and the TDP43 low complexity domain (TDP43-LCD), interact in a conformationally specific manner. This interaction significantly slows Httex1 aggregation, while it accelerates TDP43-LCD aggregation. A key intermediate responsible for both effects is a complex formed by liquid TDP43-LCD condensates and Httex1 fibrils. This complex shields seeding competent surfaces of Httex1 fibrils from Httex1 monomers, which are excluded from the condensates. In contrast, TDP43-LCD condensates undergo an accelerated liquid-to-solid transition upon exposure to Httex1 fibrils. Cellular studies show co-aggregation of untagged Httex1 with TDP43. This interaction causes mislocalization of TDP43, which has been linked to TDP43 toxicity. The protection from Httex1 aggregation in lieu of TDP43-LCD aggregation is interesting, as it mirrors what has been found in disease models, namely that TDP43 can protect from huntingtin toxicity, while mutant huntingtin can promote TDP43 pathology. These results suggest that direct protein interaction could, at least in part, be responsible for the linked pathologies of both proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408864 | PMC |
http://dx.doi.org/10.1016/j.jbc.2024.107660 | DOI Listing |
RSC Med Chem
August 2025
Department of Biological Science, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District Telangana 500078 India
Mitochondrial dysfunction is one of the primary cellular conditions involved in developing Huntington's disease (HD) pathophysiology. The accumulation of mutant huntingtin protein with abnormal PolyQ repeats resulted in the death of striatal neurons with enhanced mitochondrial fragmentation. In search of neuroprotective molecules against HD conditions, we synthesized a set of isoxazole-based small molecules to screen their suitability as beneficial chemicals improving mitochondrial health.
View Article and Find Full Text PDFBrain Commun
August 2025
Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
was identified in human and mouse Huntington's disease brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 of that contributes to aggregate formation and neuronal dysfunction. Detection of the huntingtin exon 1 protein (HTT1a) has been accomplished with Meso Scale Discovery, Homogeneous Time Resolved Fluorescence and immunoprecipitation assays in Huntington's disease knock-in mice, but direct detection in homogenates by gel electrophoresis and western blot assay has been lacking. Subcellular fractions prepared from mouse and human Huntington's disease brain were separated by gel electrophoresis and probed by western blot with neoepitope monoclonal antibodies 1B12 and 11G2 directed to the C-terminal eight residues of HTT1a.
View Article and Find Full Text PDFNeurogenetics
September 2025
Nur International University, 54600, Lahore, Punjab, Pakistan.
Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and psychiatric disturbances. It is caused by CAG repeat expansions in the HTT gene, resulting in the formation of mutant huntingtin protein that aggregates and disrupts neuronal function. This review outlines the pathogenesis of HD, including genetic, molecular, and environmental factors.
View Article and Find Full Text PDFNeural Regen Res
September 2025
Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
Voltage-dependent anion channel 1 is an integral outer membrane protein of the mitochondria that governs apoptosis, enables metabolite exchange, and influences mitochondrial activity. In neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and Alzheimer's disease, oxidative stress, neuroinflammation, and mitochondrial dysfunction are frequent features. Voltage-dependent anion channel 1 is a key regulator of these processes.
View Article and Find Full Text PDFNeurodegener Dis Manag
August 2025
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
Huntington's disease (HD) is an autosomal, progressive, dominant inherited neurological disorder characterized by motor dysfunction, cognitive decline, and psychiatric symptoms. HD is caused by abnormal expansion of trinucleotide CAG in exon1 of the gene and the accumulation of mutant huntingtin (mHTT) fragments, which leads to neurotoxicity mainly in the brain's cortex region. This review aimed to collect current research on developing effective treatment strategies, including small-molecule approaches, gene therapies, and protein degradation techniques to reduce the mHTT levels.
View Article and Find Full Text PDF