98%
921
2 minutes
20
Understanding the relationship between the concentration of a drug and its therapeutic efficacy or side effects is crucial in drug development, especially to understand therapeutic efficacy in central nervous system drug, quantifying drug-induced site-specific changes in the levels of endogenous metabolites, such as neurotransmitters. In recent times, evaluation of quantitative distribution of drugs and endogenous metabolites using matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) has attracted much attention in drug discovery research. However, MALDI-MSI quantification (quantitative mass spectrometry imaging, QMSI) is an emerging technique, and needs to be further developed for practicable and convenient use in drug discovery research. In this study, we developed a reliable QMSI method for quantification of clozapine (antipsychotic drug) and dopamine and its metabolites in the rat brain using MALDI-MSI. An improved mimetic tissue model using powdered frozen tissue for QMSI was established as an alternative method, enabling the accurate quantification of clozapine levels in the rat brain. Furthermore, we used the improved method to evaluate drug-induced fluctuations in the concentrations of dopamine and its metabolites. This method can quantitatively evaluate drug localization in the brain and drug-induced changes in the concentration of endogenous metabolites, demonstrating the usefulness of QMSI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493812 | PMC |
http://dx.doi.org/10.1007/s00216-024-05477-5 | DOI Listing |
J Food Sci
September 2025
College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.
Primary agricultural products are closely related to our daily lives, as they serve not only as raw materials for food processing but also as products directly purchased by consumers. These products face the issue of freshness decline and spoilage during both production and consumption. Freshness degradation induces sensory deterioration and nutritional loss and promotes harmful substance accumulation, causing gastrointestinal issues or even endangering life.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK.
Disrupted gamma-aminobutyric acid (GABA) neurotransmission may contribute to the pathophysiology of schizophrenia. Reductions in hippocampal GABAergic neurons have been found in schizophrenia, and increased hippocampal perfusion has been described in schizophrenia and in people at clinical high-risk for psychosis (CHRp). We have also found decreases in hippocampal GABA receptors containing the α5 subunit (GABARα5) in a well-validated neurodevelopmental rat model of relevance for schizophrenia.
View Article and Find Full Text PDFInt J Infect Dis
September 2025
Department of Laboratory Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China. Electronic address:
Prototheca, a genus of opportunistic pathogenic microalgae, can cause protothecosis in humans and animals, manifesting as cutaneous lesions or disseminated/systemic infections. This report describes a rare case of Prototheca wickerhamii toe infection in a 78-year-old Chinese male, presenting initially as gouty arthritis. The patient, who worked in fish farming with frequent water exposure, had a history of herpes zoster and hypertension.
View Article and Find Full Text PDFCurr Biol
September 2025
Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; Braunschweig Integrated Centre
Dynamic actin filament remodeling is crucial for a plethora of fundamental cell biological processes, ranging from cell division and migration to cell communication, intracellular trafficking, or tissue development. Cytochalasin B (CB) and D (CD) are fungal secondary metabolites frequently used for interference with such processes. Although they are generally assumed to block actin filament polymerization at their rapidly growing barbed ends and compete with regulators at these sites, precise molecular understanding of their effects in dynamic actin structures requires further study.
View Article and Find Full Text PDFCell
September 2025
Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg 69117, Germany; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Metabolomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Baden-Württe
Single-cell metabolomics (SCM) promises to reveal metabolism in its complexity and heterogeneity, yet current methods struggle with detecting small-molecule metabolites, throughput, and reproducibility. Addressing these gaps, we developed HT SpaceM, a high-throughput SCM method combining cell preparation on custom glass slides, small-molecule matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (MS), and batch processing. We propose a unified framework covering quality control, characterization, structural validation, and differential and functional analyses.
View Article and Find Full Text PDF