Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Insulin signaling is vital for regulating cellular metabolism, growth, and survival pathways, particularly in tissues such as adipose, skeletal muscle, liver, and brain. Its role in the heart, however, is less well-explored. The heart, requiring significant ATP to fuel its contractile machinery, relies on insulin signaling to manage myocardial substrate supply and directly affect cardiac muscle metabolism. This review investigates the insulin-heart axis, focusing on insulin's multifaceted influence on cardiac function, from metabolic regulation to the development of physiological cardiac hypertrophy. A central theme of this review is the pathophysiology of insulin resistance and its profound implications for cardiac health. We discuss the intricate molecular mechanisms by which insulin signaling modulates glucose and fatty acid metabolism in cardiomyocytes, emphasizing its pivotal role in maintaining cardiac energy homeostasis. Insulin resistance disrupts these processes, leading to significant cardiac metabolic disturbances, autonomic dysfunction, subcellular signaling abnormalities, and activation of the renin-angiotensin-aldosterone system. These factors collectively contribute to the progression of diabetic cardiomyopathy and other cardiovascular diseases. Insulin resistance is linked to hypertrophy, fibrosis, diastolic dysfunction, and systolic heart failure, exacerbating the risk of coronary artery disease and heart failure. Understanding the insulin-heart axis is crucial for developing therapeutic strategies to mitigate the cardiovascular complications associated with insulin resistance and diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313400PMC
http://dx.doi.org/10.3390/ijms25158369DOI Listing

Publication Analysis

Top Keywords

insulin resistance
20
insulin-heart axis
12
insulin signaling
12
insulin
8
heart failure
8
cardiac
6
resistance
5
axis bridging
4
bridging physiology
4
physiology insulin
4

Similar Publications

Estimation of salivary protectin D1 in periodontitis patients with metabolic syndrome following non-surgical periodontal therapy.

Clin Oral Investig

September 2025

Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technology Sciences, SIMATS, Saveetha University, Chennai, Tamil Nadu, India.

Objectives: This study aims to assess periodontal and biochemical parameters and evaluate the salivary Protectin D1 levels in periodontitis patients with and without metabolic syndrome after non-surgical periodontal therapy.

Materials And Methods: Forty patients were categorized into two groups: 20 patients in Group P (systemically healthy patients with stage II/III grade B periodontitis) and 20 patients in Group P+MS (patients with stage II/III grade B periodontitis and metabolic syndrome). Parameters including age, gender, height, weight, body mass index, waist circumference, socio-economic status, oral hygiene index (OHI), modified gingival index (MGI), probing pocket depth, clinical attachment levels, fasting blood glucose, HDL-c, total triglycerides, and blood pressure were recorded.

View Article and Find Full Text PDF

Background: A plant-focused, healthy dietary pattern, such as the Mediterranean diet enriched with dietary fiber, polyphenols, and polyunsaturated fats, is well known to positively influence the gut microbiota. Conversely, a processed diet high in saturated fats and sugars negatively impacts gut diversity, potentially leading to weight gain, insulin resistance, and chronic, low-grade inflammation. Despite this understanding, the mechanisms by which the Mediterranean diet impacts the gut microbiota and its associated health benefits remain unclear.

View Article and Find Full Text PDF

Current status of Liraglutide delivery systems for the management of type 2 diabetes mellitus.

Drug Deliv Transl Res

September 2025

Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India.

Diabetes is a metabolic disorder of increasing global concern. Characterized by constantly elevated levels of glucose, severe β-cell dysfunction, and insulin resistance, it is the cause of a major burden on patients if not managed with therapeutic and lifestyle changes. The human body is slowly developing tolerance to many marketed antidiabetic drugs and the quest for the discovery of newer molecules continues.

View Article and Find Full Text PDF

Processed Meat Health Risks: Pathways and Dietary Solutions.

J Nutr

September 2025

School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia; Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250

Background: Red and processed meat consumption is extensively linked to chronic disease risk in observational studies, with robust meta-analyses demonstrating significant positive associations for colorectal, breast, endometrial, and lung cancers, type 2 diabetes (T2DM), cardiovascular disease (CVD), and all-cause mortality. Dose-response relationships indicate elevated risks even at moderate intakes. Moreover, processed meats consistently show stronger detrimental effects than unprocessed red meats.

View Article and Find Full Text PDF

Steroid hormones are integral to pregnancy and fetal development, regulating processes such as metabolism, inflammation, and immune responses. Excessive prenatal steroid exposure, through lifestyle choices or environmental chemicals, can lead to metabolic dysfunctions in offspring. The research focuses on how exposure to testosterone (T) and bisphenol A (BPA) affects the liver's DNA methylome, a key component of the epigenome influencing long-term health.

View Article and Find Full Text PDF