98%
921
2 minutes
20
Human retinal organoids (ROs) have emerged as valuable tools for studying retinal development, modeling human retinal diseases, and screening drugs. However, their application is limited primarily due to time-intensive generation, high costs, and low reproducibility. Quality assessment of RO differentiation is crucial for their application in research. However, traditional methods such as morphological evaluation and immunohistochemical analysis have limitations due to their lack of precision and invasiveness, respectively. This study aims to identify non-invasive biomarkers for RO differentiation quality using exosomal microRNAs (miRNAs), which are known to reflect cell-specific functions and development in the retina. We differentiated ROs from human induced pluripotent stem cells (hiPSCs) and classified them into 'superior' and 'inferior' groups based on morphological and immunohistochemical criteria. Exosomes from the conditioned media were isolated and analyzed for miRNA content. Our findings revealed distinct miRNA profiles between superior and inferior ROs, with superior ROs exhibiting higher miRNA diversity and specifically up- or down-regulated miRNAs. Gene ontology and pathway enrichment analyses indicated that the target genes of these miRNAs are involved in neuron proliferation and differentiation. The study suggests the potential of exosomal hsa-miR-654-3p and hsa-miR-451a as non-invasive biomarkers for real-time monitoring of RO quality, facilitating the development of standardized, efficient, and cost-effective culture methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11312389 | PMC |
http://dx.doi.org/10.3390/ijms25158011 | DOI Listing |
Turk J Pediatr
September 2025
Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
Background: Glucocorticoids remain the primary treatment for acute lymphoblastic leukemia (ALL) in children. However, glucocorticoid-resistant ALL exhibits increased mortality rates. To overcome resistance and improve management strategies, alternative therapeutic agents are required.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
September 2025
Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China.
Wheat, a significant source of protein, can also induce various wheat-related allergic reactions (WRARs). Statistical data show significant spatiotemporal and geographical variations in the prevalence of WRARs. Studies reveal that hexaploid wheat exhibits notably higher allergenicity.
View Article and Find Full Text PDFClin Transplant
September 2025
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
Background: Liver transplantation is the definitive treatment for end-stage liver disease and some cancers. The use of livers from donors following pre-donation cardiac arrest (PDCA), especially with prolonged downtime duration, has been limited outside of the US due to fears over inferior outcomes from ischemic injury. However, PDCA may induce ischemic preconditioning, paradoxically improving post-transplant outcomes.
View Article and Find Full Text PDFSci Signal
September 2025
Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35233, USA.
Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.
View Article and Find Full Text PDFElife
September 2025
Department of Biology, University of Copenhagen, Copenhagen, Denmark.
Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.
View Article and Find Full Text PDF