Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The current gold standard in device therapy for advanced heart failure (HF), which has been firmly established in HF management for more than 25 years, is classical biventricular pacing (BiV-CRT). In the last decade, a new pacing modality called conduction system pacing (CSP) has emerged as a variant for advanced cardiac device therapy. It provides pacing with preserved intrinsic cardiac activation by direct stimulation of the specific cardiac conduction system. The term CSP integrates the modalities of HIS bundle pacing (HBP) and left bundle branch area pacing (LBBAP), both of which have provided convincing data in smaller randomized and big non-randomized studies for the prevention of pacemaker-induced cardiomyopathy and for providing effective cardiac resynchronization therapy in patients with classical CRT-indication (primary approach or after failed CRT). Recent American guidelines proposed the term "cardiac physiological pacing" (CPP), which summarizes CSP including left ventricular septal pacing (LVSP), a technical variant of LBBAP together with classical BiV-CRT. The terms HOT-CRT (HIS-optimized CRT) and LOT-CRT (LBBP-optimized CRT) describe hybrid technologies that combine CSP with an additional coronary-sinus electrode, which is sometimes useful in patients with advanced HF and diffuse interventricular conduction delay. If CSP continues providing promising data that can be confirmed in big, randomized trials, it is likely to become the new gold standard for patients with an expected high percentage of pacing (>20%), possibly also for cardiac resynchronization therapy. CSP is a sophisticated new treatment option that has the potential to raise the term "cardiac resynchronization therapy" to a new level. The aim of this review is to provide basic technical, anatomical, and functional knowledge of these new pacemaker techniques in order to facilitate the understanding of the different modalities, as well as to provide an up-to-date overview of the existing randomized and non-randomized evidence, particularly in direct comparison to right ventricular and classical biventricular pacing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313455PMC
http://dx.doi.org/10.3390/jcm13154320DOI Listing

Publication Analysis

Top Keywords

conduction system
12
gold standard
12
cardiac resynchronization
12
pacing
10
system pacing
8
device therapy
8
classical biventricular
8
biventricular pacing
8
resynchronization therapy
8
term "cardiac
8

Similar Publications

Toward Human-Centered Artificial Intelligence for Users' Digital Well-Being: Systematic Review, Synthesis, and Future Directions.

JMIR Hum Factors

September 2025

Seidenberg School of Computer Science and Information Systems, Pace University, New York City, NY, United States.

Background: As information and communication technologies and artificial intelligence (AI) become deeply integrated into daily life, the focus on users' digital well-being has grown across academic and industrial fields. However, fragmented perspectives and approaches to digital well-being in AI-powered systems hinder a holistic understanding, leaving researchers and practitioners struggling to design truly human-centered AI systems.

Objective: This paper aims to address the fragmentation by synthesizing diverse perspectives and approaches to digital well-being through a systematic literature review.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic forced the world to quarantine to slow the rate of transmission, causing communities to transition into virtual spaces. Asian American and Pacific Islander communities faced the additional challenge of discrimination that stemmed from racist and xenophobic rhetoric in the media. Limited data exist on technology use among Asian American and Pacific Islander adults during the height of the COVID-19 shelter-in-place period and its effect on their physical and mental health.

View Article and Find Full Text PDF

Background: Breast cancer treatment, particularly during the perioperative period, is often accompanied by significant psychological distress, including anxiety and uncertainty. Mobile health (mHealth) interventions have emerged as promising tools to provide timely psychosocial support through convenient, flexible, and personalized platforms. While research has explored the use of mHealth in breast cancer prevention, care management, and survivorship, few studies have examined patients' experiences with mobile interventions during the perioperative phase of breast cancer treatment.

View Article and Find Full Text PDF

Prolonging All-Optical Molecular Electron Spin Coherence in the Tissue Transparency Window.

J Am Chem Soc

September 2025

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].

View Article and Find Full Text PDF

Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.

View Article and Find Full Text PDF