98%
921
2 minutes
20
Mixed-linkage β(1,3)/β(1,4)-glucan (MLG) is abundant in the human diet through the ingestion of cereal grains and is widely associated with healthful effects on metabolism and cholesterol levels. MLG is also a major source of fermentable glucose for the human gut microbiota (HGM). Bacteria from the family Prevotellaceae are highly represented in the HGM of individuals who eat plant-rich diets, including certain indigenous people and vegetarians in postindustrial societies. Here, we have defined and functionally characterized an exemplar Prevotellaceae MLG polysaccharide utilization locus (MLG-PUL) in the type-strain Segatella copri (syn. Prevotella copri) DSM 18205 through transcriptomic, biochemical, and structural biological approaches. In particular, structure-function analysis of the cell-surface glycan-binding proteins and glycoside hydrolases of the S. copri MLG-PUL revealed the molecular basis for glycan capture and saccharification. Notably, syntenic MLG-PULs from human gut, human oral, and ruminant gut Prevotellaceae are distinguished from their counterparts in Bacteroidaceae by the presence of a β(1,3)-specific endo-glucanase from glycoside hydrolase family 5, subfamily 4 (GH5_4) that initiates MLG backbone cleavage. The definition of a family of homologous MLG-PULs in individual species enabled a survey of nearly 2000 human fecal microbiomes using these genes as molecular markers, which revealed global population-specific distributions of Bacteroidaceae- and Prevotellaceae-mediated MLG utilization. Altogether, the data presented here provide new insight into the molecular basis of β-glucan metabolism in the HGM, as a basis for informing the development of approaches to improve the nutrition and health of humans and other animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418011 | PMC |
http://dx.doi.org/10.1016/j.jbc.2024.107625 | DOI Listing |
J Phys Chem A
September 2025
Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland.
A virtually no-cost method is proposed that can compute the correlation energies of general, covalently bonded, organic, and inorganic molecules (including conjugated π-electron systems) with a well-defined dominant Lewis structure at the accuracy of 99.5% of the near-exact values determined by the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] in the complete-basis-set (CBS) limit. This Correlation Energy Per Bond (CEPB) method assigns a partial correlation energy to each bond type (characterized by the identities of the two atoms forming the bond and its integer bond order) and to a lone pair, regardless of the bond length, bond angle, sp-hybridization, π-electron conjugation, ionicity, noncovalent interactions, etc.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
Cell type-specific regulatory programs that drive type 1 diabetes (T1D) in the pancreas are poorly understood. Here, we performed single-nucleus multiomics and spatial transcriptomics in up to 32 nondiabetic (ND), autoantibody-positive (AAB), and T1D pancreas donors. Genomic profiles from 853,005 cells mapped to 12 pancreatic cell types, including multiple exocrine subtypes.
View Article and Find Full Text PDFSci Adv
September 2025
Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
Integrins bind ligands between their alpha (α) and beta (β) subunits and transmit signals through conformational changes. Early in chordate evolution, some α subunits acquired an "inserted" (I) domain that expanded integrin's ligand-binding repertoire but obstructed the ancestral ligand pocket, seemingly blocking conventional integrin activation. Here, we compare cryo-electron microscopy structures of apo and ligand-bound states of the I domain-containing αEβ integrin and the I domain-lacking αβ integrin to illuminate how the I domain intrinsically mimics an extrinsic ligand to preserve integrin function.
View Article and Find Full Text PDFSci Transl Med
September 2025
Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
IFN-β, a type I interferon, has been used as a first-line therapy for patients with multiple sclerosis (MS) for more than 30 years; however, the cellular and molecular basis of its therapeutic efficacy remains unclear. Here, we first used experimental autoimmune encephalomyelitis (EAE), a mouse model for MS, to show that the therapeutic effects of IFN-β were associated with a down-regulation of microRNA-21 (miR-21) and pathogenic T17 (pT17) cells. In vitro experiments demonstrated that genetic knockout of miR-21 directly inhibited pathogenic T17 cell differentiation.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Systems Biology and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.
Gene signatures predictive of chemotherapeutic response have the potential to extend the reach of precision medicine by allowing oncologists to optimize treatment for individuals. Most published predictive signatures are only capable of predicting response for individual drugs, but most chemotherapy regimens utilize combinations of different agents. We propose a unified framework, called the chemogram, that uses predictive signatures to rank the relative predicted sensitivity of different drugs for individual tumors.
View Article and Find Full Text PDF