Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Type II diabetes (T2D) stems from insulin resistance, with β-cell dysfunction as a hallmark in its progression. Studies reveal that β cells undergo apoptosis or dedifferentiation during T2D development. The transcription factor PAX4 is vital for β differentiation and survival, thus may be a potential enhancer of β-cell function in T2D islets. Human PAX4 cDNA was delivered into T2D human islets with an adenoviral vector, and its effects on β cells were examined. PAX4 gene delivery significantly improved β-cell survival, and increased β-cell composition in the T2D human islets. Basal insulin and glucose-stimulated insulin secretion in PAX4-expressing islets were substantially higher than untreated or control-treated T2D human islets. Introduced PAX4 expression in T2D human islets improves β-cell function, thus could provide therapeutic benefits for T2D treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321267 | PMC |
http://dx.doi.org/10.1080/17460751.2024.2343538 | DOI Listing |