Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ovarian cancer is the deadliest gynecologic malignancy, and therapeutic options and mortality rates over the last three decades have largely not changed. Recent studies indicate that the composition of the tumor immune microenvironment (TIME) influences patient outcomes. To improve spatial understanding of the TIME, we performed multiplexed ion beam imaging on 83 human high-grade serous carcinoma tumor samples, identifying approximately 160,000 cells across 23 cell types. From the 77 of these samples that met inclusion criteria, we generated composition features based on cell type proportions, spatial features based on the distances between cell types, and spatial network features representing cell interactions and cell clustering patterns, which we linked to traditional clinical and IHC variables and patient overall survival (OS) and progression-free survival (PFS) outcomes. Among these features, we found several significant univariate correlations, including B-cell contact with M1 macrophages (OS HR = 0.696; P = 0.011; PFS HR = 0.734; P = 0.039). We then used high-dimensional random forest models to evaluate out-of-sample predictive performance for OS and PFS outcomes and to derive relative feature importance scores for each feature. The top model for predicting low or high PFS used TIME composition and spatial features and achieved an average AUC score of 0.71. The results demonstrate the importance of spatial structure in understanding how the TIME contributes to treatment outcomes. Furthermore, the present study provides a generalizable roadmap for spatial analyses of the TIME in ovarian cancer research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534564PMC
http://dx.doi.org/10.1158/2326-6066.CIR-23-1109DOI Listing

Publication Analysis

Top Keywords

spatial structure
8
tumor immune
8
immune microenvironment
8
high-grade serous
8
serous carcinoma
8
ovarian cancer
8
understanding time
8
cell types
8
features based
8
spatial features
8

Similar Publications

Immunoelectron microscopy: a comprehensive guide from sample preparation to high-resolution imaging.

Discov Nano

September 2025

Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.

Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.

View Article and Find Full Text PDF

Genomes are composed of a mosaic of segments inherited from different ancestors, each separated by past recombination events. Consequently, genealogical relationships among multiple genomes vary spatially across different genomic regions. Genealogical variation among unlinked (uncorrelated) genomic regions is well described for either a single population (coalescent) or multiple structured populations (multispecies coalescent).

View Article and Find Full Text PDF

High-Performance Air-Stable Polymer Monolayer Transistors for Monolithic 3D CMOS logics.

Adv Mater

September 2025

State Key Laboratory of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing, 100029, China.

The monolayer transistor, where the semiconductor layer is a single molecular layer, offers an ideal platform for exploring transport mechanisms both theoretically and experimentally by eliminating the influence of spatially correlated microstructure. However, the structure-property relations in polymer monolayers remain poorly understood, leading to low transistor performance to date. Herein, a self-confinement effect is demonstrated in the polymer monolayer with nanofibrillar microstructures and edge-on orientation, as characterized by the 4D scanning confocal electron diffraction method.

View Article and Find Full Text PDF

Toward Rational Electrocatalyst Design: Dynamic Insights from Liquid Environmental Transmission Electron Microscopy.

Adv Mater

September 2025

Center of Electron Microscopy, State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang Key Laboratory of Low-Carbon Synthesis of Value-Added Chemicals, Zhejiang University, Hangzhou, 310027, China.

Electrocatalysis, a pivotal field at the intersection of physical chemistry and materials science, plays a crucial role in advancing energy conversion and storage technologies through rational catalyst design. However, understanding reaction mechanisms at the atomic level remains a great challenge due to the intricate interplay between catalysts, reactants, and complex environments (e.g.

View Article and Find Full Text PDF

We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.

View Article and Find Full Text PDF