98%
921
2 minutes
20
Compared to nanozymes with single enzyme activity, those with multiple enzyme activities possess broader application potential due to their diversified enzymatic functionalities. However, the multienzyme nanozymes currently face challenges of interference among different enzymatic activities during practical applications. In this study, we report the synthesis of a light-responsive YbGd-carbon quantum dots nano-hybrid, termed YbGd-CDs, which exhibits controllable enzyme-mimicking activities. This light-responsive behavior enables selective control of the enzymatic activities. Under visible light irradiation, YbGd-CDs demonstrate robust oxidase-like activity. Conversely, under dark conditions, they primarily exhibit peroxidase-like activity. Leveraging the dual-enzyme-mimicking capabilities of YbGd-CDs, we developed colorimetric assays for sensitive detection of total antioxidant capacity (TAC) in both normal and cancer cells as well as d-amino acids in human saliva. This study not only advances the synthesis of carbon-based nanozymes but also highlights their potential in biosensing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c01560 | DOI Listing |
Anal Chem
August 2024
Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 41
Compared to nanozymes with single enzyme activity, those with multiple enzyme activities possess broader application potential due to their diversified enzymatic functionalities. However, the multienzyme nanozymes currently face challenges of interference among different enzymatic activities during practical applications. In this study, we report the synthesis of a light-responsive YbGd-carbon quantum dots nano-hybrid, termed YbGd-CDs, which exhibits controllable enzyme-mimicking activities.
View Article and Find Full Text PDF