Advances in understanding the graft healing mechanism: a review of factors and regulatory pathways.

Hortic Res

State Key Laboratory for Efficient Production of Forest Resources, Key Laboratory of Silviculture and Conservation of the Ministry of Education, National Energy R&D Center for Non-food Biomass, Ministry of Education of Engineering Research Centre for Forest and Grassland Carbon Sequestration, Colleg

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Grafting is a widely used technique for asexual plant reproduction, especially in agriculture and forestry. This procedure is used to shorten the seedling period, improve the structure of scion branches, and help plants adapt to difficult environments. Although grafting has numerous benefits, several obstacles remain to be overcome. The connection between scion and rootstock is regulated by various factors, including phytohormones and molecular mechanisms, which are crucial for graft healing. This review provides an overview of recent advances in the field of grafting, with a specific focus on the factors and regulatory pathways that influence graft healing. The ultimate goal is to aid understanding of how to achieve successful grafting between plants and create desirable grafting chimeras. We provide an overview of the latest developments in plant grafting, covering aspects related to morphology, physiology, and molecular biology. We also discuss research directions in polyploid breeding and long-distance transfer of small molecules in grafted plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301322PMC
http://dx.doi.org/10.1093/hr/uhae175DOI Listing

Publication Analysis

Top Keywords

graft healing
12
factors regulatory
8
regulatory pathways
8
grafting
6
advances understanding
4
understanding graft
4
healing mechanism
4
mechanism review
4
review factors
4
pathways grafting
4

Similar Publications

This study evaluated the influence of a customized healing abutment (CHA) placed on immediate implants. It also assessed bone ridge volume, keratinized mucosal collar, and postoperative pain. Thirty-one patients needing tooth extraction and immediate implant were selected.

View Article and Find Full Text PDF

Heart-derived endogenous stem cells.

Mol Biol Rep

September 2025

Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.

Regenerative cardiology has emerged as a novel strategy to improve cardiac healing following ischemic injury. While stem-cell-mediated cardiac regeneration has garnered much attention as a promising strategy, its value remains debated owing to the lack of ideal stem cell source candidates. Resident/endogenous cardiac-derived stromal cells (CSCs) exhibit superior therapeutic potential due to their innate abilities to differentiate into cardiac cells, especially cardiomyocytes (CM).

View Article and Find Full Text PDF

Objectives: This study aimed to compare the efficacy of the full-thickness palatal graft technique (FTPGT) and the coronally advanced flap with subepithelial connective tissue graft (CAF + SCTG) in achieving complete root coverage (CRC) in single gingival recessions (GR).

Methods: Forty healthy patients with a single RT1 GR were randomized into two groups: 20 treated with CAF + SCTG and 20 with FTPGT. Baseline and 12-month measurements of GR, keratinized tissue width (KTW), probing depth (PD), clinical attachment level (CAL), and gingival thickness (GT) were recorded.

View Article and Find Full Text PDF

Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.

View Article and Find Full Text PDF

Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.

View Article and Find Full Text PDF