A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An all-in-one microfluidic SlipChip for power-free and rapid biosensing of pathogenic bacteria. | LitMetric

An all-in-one microfluidic SlipChip for power-free and rapid biosensing of pathogenic bacteria.

Lab Chip

Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Point-of-care testing of pathogens is becoming more and more important for the prevention and control of food poisoning. Herein, a power-free colorimetric biosensor was presented for rapid detection of using a microfluidic SlipChip for fluidic control and Au@PtPd nanocatalysts for signal amplification. All the procedures, including solution mixing, immune reaction, magnetic separation, residual washing, mimicking catalysis and colorimetric detection, were integrated on this SlipChip. First, the mixture of the bacterial sample, immune magnetic nanobeads (IMBs) and immune Au@PtPd nanocatalysts (INCs), washing buffer and HO-TMB chromogenic substrate were preloaded into the sample, washing and catalysis chambers, respectively. After the top layer of this SlipChip was slid to connect the sample chamber with the separation chamber, the mixture was moved back and forth through the asymmetrical split-and-recombine micromixer by using a disposable syringe to form the IMB--INC sandwich conjugates. Then, the conjugates were captured in the separation chamber using a magnetic field, and the top layer was slid to connect the washing chamber with the separation chamber for washing away excessive INCs. Finally, the top layer was slid to connect the catalysis chamber with the separation chamber, and the colorless substrate was catalyzed by the INCs with peroxidase-mimic activity to generate color change, followed by using a smartphone app to collect and analyze the image to determine the bacterial concentration. This all-in-one microfluidic biosensor enabled simple detection of as low as 101.2 CFU mL within 30 min and was featured with low cost, straightforward operation, and compact design.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4lc00366gDOI Listing

Publication Analysis

Top Keywords

separation chamber
16
top layer
12
slid connect
12
chamber separation
12
all-in-one microfluidic
8
microfluidic slipchip
8
au@ptpd nanocatalysts
8
layer slid
8
chamber
7
separation
5

Similar Publications