A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A better performing algorithm for identification of implausible growth data from longitudinal pediatric medical records. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tracking trajectories of body size in children provides insight into chronic disease risk. One measure of pediatric body size is body mass index (BMI), a function of height and weight. Errors in measuring height or weight may lead to incorrect assessment of BMI. Yet childhood measures of height and weight extracted from electronic medical records often include values which seem biologically implausible in the context of a growth trajectory. Removing biologically implausible values reduces noise in the data, and thus increases the ease of modeling associations between exposures and childhood BMI trajectories, or between childhood BMI trajectories and subsequent health conditions. We developed open-source algorithms (available on github) for detecting and removing biologically implausible values in pediatric trajectories of height and weight. A Monte Carlo simulation experiment compared the sensitivity, specificity and speed of our algorithms to three published algorithms. The comparator algorithms were selected because they used trajectory information, had open-source code, and had published verification studies. Simulation inputs were derived from longitudinal epidemiological cohorts. Our algorithms had higher specificity, with similar sensitivity and speed, when compared to the three published algorithms. The results suggest that our algorithms should be adopted for cleaning longitudinal pediatric growth data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303760PMC
http://dx.doi.org/10.1038/s41598-024-69161-5DOI Listing

Publication Analysis

Top Keywords

height weight
16
biologically implausible
12
growth data
8
longitudinal pediatric
8
medical records
8
body size
8
removing biologically
8
implausible values
8
childhood bmi
8
bmi trajectories
8

Similar Publications