98%
921
2 minutes
20
Due to the atomic asymmetry, Janus transition metal dichalcogenide monolayers possess spontaneous curling and can even form one-dimensional nanoscrolls. Unveiling this spontaneous formation mechanism of nanoscrolls is of great importance for precise structural control. In this paper, we successfully simulate the process of Janus MoSSe nanoscroll formation from flat nanoribbons, based on molecular dynamics (MD) simulations with hybrid potentials. The spontaneous scrolling is purely driven by the relaxation of intrinsic strain in Janus MoSSe. The final structure of nanoscroll is strongly affected by the length of nanoribbon with a nonmonotonous relation. To further understand the mechanism, we establish a thermodynamic model to determine the inner radius of MoSSe nanoscrolls, which is shown to be related to spontaneous curvature, bending stiffness, interlayer van der Waals interaction, interlayer distance, and length of initial nanoribbon. The results correspond well with MD simulations of nanoscrolls from flat nanoribbons and the molecular static simulations of directly built nanoscrolls. Moreover, the inner radii of MoSeTe and MoSTe nanoscrolls are predicted based on the model. Our results provide insights into the Janus TMD nanoscroll formation and a pathway for controllable fabrication of nanoscrolls.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c09662 | DOI Listing |
Small
November 2024
Institute of Advanced Interdisciplinary Technology, Shenzhen MSU-BIT University, Shenzhen, 518172, China.
Graphyne nanoscrolls (GNSs) have attracted significant research interest because of their wide-ranging applications. However, the production of GNSs via a self-scrolling approach is environment dependent. Here, molecular dynamics simulations are conducted to evaluate the self-scrolling behavior of an α-graphyne (α-GY) ribbon on a carbon nanotube (CNT) within various multiphysical environments, accounting for the interactions among temperature, electric field, and argon gas.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
Due to the atomic asymmetry, Janus transition metal dichalcogenide monolayers possess spontaneous curling and can even form one-dimensional nanoscrolls. Unveiling this spontaneous formation mechanism of nanoscrolls is of great importance for precise structural control. In this paper, we successfully simulate the process of Janus MoSSe nanoscroll formation from flat nanoribbons, based on molecular dynamics (MD) simulations with hybrid potentials.
View Article and Find Full Text PDFNanoscale
August 2024
Functional Nanomaterials Lab, The University of Texas at San Antonio. Department of Physics and Astronomy, One UTSA Circle, San Antonio, TX, 78249, USA.
Int J Biol Macromol
June 2024
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India. Electronic address:
In conventional chemotherapy, the cancer cells can become highly resilient due to a phenomenon known as multi-drug resistance (MDR). The co-delivery of chemotherapeutic agents assisted with novel nanocarrier-based targeted DDS may counter the MDR issues and subsequently improve their therapeutic efficacy. In line with this, the present work deals with the development of 1D graphene oxide nanoscrolls (GONS)-based nano delivery system for co-delivery of chemosensitizer along with the chemotherapeutic agent.
View Article and Find Full Text PDFJ Mol Model
October 2023
Computational Materials Laboratory, LCCMat, Institute of Physics, University of Brasília, 70910-900, Brasília, Brazil.
Context: Nanoscrolls are tube-shaped structures formed when a sheet or ribbon of material is rolled into a cylinder, creating a hollow tube with a diameter on the nanoscale, similar to the papyrus. Carbon nanoscrolls have unique properties that make them useful in various applications, such as energy storage, catalysis, and drug delivery. In this study, we employed classical molecular dynamics simulations to investigate the formation and stability of nanoscrolls composed of graphene and hexagonal boron nitride (hBN) nanoribbons.
View Article and Find Full Text PDF