Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

One of the foremost targets in the advancement of biomaterials to engineer vascularized tissues is not only to replicate the composition of the intended tissue but also to create thicker structures incorporating a vascular network for adequate nutrients and oxygen supply. For the first time, to the best of current knowledge, a clinically relevant biomaterial is developed, demonstrating that hydrogels made from the human decellularized extracellular matrix can exhibit robust mechanical properties (in the kPa range) and angiogenic capabilities simultaneously. These properties enable the culture and organization of human umbilical vein endothelial cells into tubular structures, maintaining their integrity for 14 days in vitro without the need for additional polymers or angiogenesis-related factors. This is achieved by repurposing the placenta chorionic membrane (CM), a medical waste with an exceptional biochemical composition, into a valuable resource for bioengineering purposes. After decellularization, the CM underwent chemical modification with methacryloyl groups, giving rise to methacrylated CM (CMMA). CMMA preserved key proteins, as well as glycosaminoglycans. The resulting hydrogels rapidly photopolymerize and have enhanced strength and customizable mechanical properties. Furthermore, they demonstrate angio-vasculogenic competence in vitro and in vivo, holding significant promise as a humanized platform for the engineering of vascularized tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202401510DOI Listing

Publication Analysis

Top Keywords

vascularized tissues
8
mechanical properties
8
human chorionic
4
chorionic membrane-derived
4
membrane-derived tunable
4
tunable hydrogels
4
hydrogels vascular
4
vascular tissue
4
tissue engineering
4
engineering strategies
4

Similar Publications

Kommerell's diverticulum (KD) combined with a right-sided aortic arch (RAA) and an aberrant left subclavian artery (ALSA) is a rare congenital vascular anomaly causing significant compressive dysphagia. Treatment options, including open surgery, thoracic endovascular aortic repair and hybrid approaches, are debated due to anatomical complexities. We report a 48-year-old female with dysphagia from symptomatic KD, RAA and ALSA, clearly delineated by preoperative computed tomography angiography.

View Article and Find Full Text PDF

Background: The long-term clinical efficacy of intraportal islet transplantation is hampered by islet loss due to inflammation, oxidative stress, and insufficient vascularization. This study explores the venous sac as an alternative implantation site for islet transplantation in large animal models.

Methods: An immunosuppressed, diabetic cynomolgus monkey received allogeneic islet implants in its mesenteric venous sac, with metabolic assessments over 112 days.

View Article and Find Full Text PDF

There are no standardized guidelines for reconstructive surgery of large temporal bone defects following lateral temporal bone resection for external auditory (acoustic) meatus carcinoma. Filling the defect with well-vascularized tissue is important for large tissue defects to promote wound healing and prevent infection postoperatively. Patients with malignant tumors of the external acoustic meatus requiring lateral temporal bone resection may sometimes necessitate postoperative adjuvant chemoradiotherapy.

View Article and Find Full Text PDF

Camels have unique morphological traits that enable them to adapt well to harsh conditions. This work aims to describe the vascular architecture of the camel retina and investigate its cellular components with a focus on the distribution of mitochondria in Muller cells and photoreceptors, using light and electron microscopy. The camel retina is euangiotic in which blood vessels extend in the inner retina from the nerve fiber layer to the outer plexiform layer.

View Article and Find Full Text PDF

Background: Tetrandrine (TET) demonstrates therapeutic potential for hypoxic pulmonary hypertension (HPH); however, its precise pharmacological mechanisms remain unclear. In this study, we aimed to investigate the effects of TET on pulmonary vascular remodeling (PVR) in HPH and elucidate the molecular pathways through which TET ameliorates HPH.

Methods: We established a rat model of HPH and evaluated the therapeutic effects of TET by measuring hemodynamic parameters, assessing right ventricular hypertrophy, and analyzing pathological changes in lung tissue.

View Article and Find Full Text PDF