Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This paper proposes a hybrid control framework based on internal model concepts, sliding mode control methodology, and fractional-order calculus theory. As a result, a modified Smith predictor (SP) is proposed for nonlinear systems with significant delays. The particular predictive approach enhances the sliding mode control (SMC) controller's transient responses for dead-time processes, and the SMC gives the predictive structure robustness for model mismatches by combining the previous methods with fractional order concepts; the result is a dynamical sliding mode controller. A numerical example is considered to evaluate the performance of the proposed approach, where a step change, external disturbance, and parametric uncertainty test are performed. A real application in the TCLab Arduino kit is presented; the proposed method presented good performance with a little amount of chattering, and in the disturbance rejection case, the overshoot increased with an aggressive response; in both cases, better tuning parameters can improve the process response and the controller action.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292832 | PMC |
http://dx.doi.org/10.1021/acsomega.3c10514 | DOI Listing |