Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Data scarcity is one of the most critical issues impeding the development of prediction models for chemical effects. Multitask learning algorithms leveraging knowledge from relevant tasks showed potential for dealing with tasks with limited data. However, current multitask methods mainly focus on learning from datasets whose task labels are available for most of the training samples. Since datasets were generated for different purposes with distinct chemical spaces, the conventional multitask learning methods may not be suitable. This study presents a novel multitask learning method MTForestNet that can deal with data scarcity problems and learn from tasks with distinct chemical space. The MTForestNet consists of nodes of random forest classifiers organized in the form of a progressive network, where each node represents a random forest model learned from a specific task. To demonstrate the effectiveness of the MTForestNet, 48 zebrafish toxicity datasets were collected and utilized as an example. Among them, two tasks are very different from other tasks with only 1.3% common chemicals shared with other tasks. In an independent test, MTForestNet with a high area under the receiver operating characteristic curve (AUC) value of 0.911 provided superior performance over compared single-task and multitask methods. The overall toxicity derived from the developed models of zebrafish toxicity is well correlated with the experimentally determined overall toxicity. In addition, the outputs from the developed models of zebrafish toxicity can be utilized as features to boost the prediction of developmental toxicity. The developed models are effective for predicting zebrafish toxicity and the proposed MTForestNet is expected to be useful for tasks with distinct chemical space that can be applied in other tasks.Scieific contributionA novel multitask learning algorithm MTForestNet was proposed to address the challenges of developing models using datasets with distinct chemical space that is a common issue of cheminformatics tasks. As an example, zebrafish toxicity prediction models were developed using the proposed MTForestNet which provide superior performance over conventional single-task and multitask learning methods. In addition, the developed zebrafish toxicity prediction models can reduce animal testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297603PMC
http://dx.doi.org/10.1186/s13321-024-00891-4DOI Listing

Publication Analysis

Top Keywords

zebrafish toxicity
28
multitask learning
24
distinct chemical
20
chemical space
16
novel multitask
12
tasks distinct
12
toxicity prediction
12
prediction models
12
developed models
12
toxicity
10

Similar Publications

Exploring the effect of copper on the bioactivity of 8-quinolines: an and study.

Dalton Trans

September 2025

Biomedical Inorganic Chemistry Lab, Department of Chemical Sciences, University of Catania, v.le A. Doria 6, 95125, Catania, Italy.

Current anticancer therapy is challenged by the adaptability and resistance of tumor cells as well as limited drug selectivity that causes severe side effects. The scientific community maintains high interest in metal-based chemotherapeutic agents due to their unique interactions with cancer cells, potentially overcoming resistance mechanisms and exploiting the physiopathology of the tumour tissues. Copper, in particular, plays a dual role in cancer, both facilitating tumor progression and triggering cuproptosis, a copper-induced cell death mechanism.

View Article and Find Full Text PDF

Ambroxol (AMB), a common expectorant, enters aquatic environments via wastewater, yet its ecological risks remain unclear. Under UV exposure (15 mJ·cm, λ = 185-400 nm), AMB undergoes photolysis, among the photoproducts, 4-((2-amino-3-bromobenzyl)amino) cyclohexanol (P1) and 2-amino-3,5-dibromobenzaldehyde (DBA) are major species, comprising over 50% of the total photoproduct peak area at the photolytic plateau. Acute toxicity tests with AMB, P1, and DBA in four aquatic species at different trophic levels revealed: the highest sensitivity in (LC = 0.

View Article and Find Full Text PDF

Effects of rosmarinic acid on the fibrotic toxicity of amylin in a zebrafish model.

Biochem Biophys Res Commun

September 2025

Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido, 050-8585, Japan. Electronic address:

Amylin aggregation and the resulting fibrotic toxicity are associated with the pathogenesis of type 2 diabetes mellitus (T2DM). This study evaluated the protective effects of rosmarinic acid (RA) against amylin-induced toxicity in a zebrafish model. Healthy zebrafish embryos from cell stages 1-8 were microinjected with a mixture of 50 μM amylin and 20 μM thioflavin-T (ThT) to induce amylin aggregation and fluorescently label fibril deposition.

View Article and Find Full Text PDF

In the zebrafish larval toxicity model, phenotypic changes induced by chemical exposure can potentially be explained and predicted by the analysis of gene expression changes at sub-phenotypic concentrations. The increase in knowledge of gene pathway-specific effects arising from the zebrafish transcriptomic model has the potential to enhance the role of the larval zebrafish as a component of Integrated Approaches to Testing and Assessment (IATA). In this paper, we compared the transcriptomic responses of triphenyl phosphate between two standard exposure paradigms, the Zebrafish Embryo Toxicity (ZET) and General and Behavioural Toxicity (GBT) assays.

View Article and Find Full Text PDF

Fisetin modulates fluoride induced osteochondral toxicity in zebrafish larvae.

Comp Biochem Physiol C Toxicol Pharmacol

September 2025

Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India. Electronic address:

Excessive fluoride (F) exposure, particularly during early development, poses a significant risk to skeletal integrity by disrupting bone homeostasis through oxidative stress and altered mineralization. While F induced oxidative stress is well documented, studies investigating the role of natural antioxidants in mitigating F induced osteochondral toxicity remains limited. Hence, the present study investigated the osteomodulatory effect of fisetin (Fis) against F toxicity in zebrafish larvae.

View Article and Find Full Text PDF