Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carbon fibers (CFs) are fabricated by blending hardwood kraft lignin (HKL) and cellulose. Various compositions of HKL and cellulose in blended solutions are air-gap spun in 1-ethyl-3-methylimidazolium acetate (EMIM OAc), resulting in the production of virtually bead-free quality fibers. The synthesized HKL-cellulose fibers are thermostabilized and carbonized to achieve CFs, and consequently their electrical and mechanical properties are evaluated. Remarkably, fibers with the highest lignin content (65%) exhibited an electrical conductivity of approximately 42 S/cm, surpassing that of cellulose (approximately 15 S/cm). Moreover, the same fibers demonstrated significantly improved tensile strength (∼312 MPa), showcasing a 5-fold increase compared to pure cellulose while maintaining lower stiffness. Comprehensive analyses, including Auger electron spectroscopy and wide-angle X-ray scattering, show a heterogeneous skin-core morphology in the fibers revealing a higher degree of preferred orientation of carbon components in the skin compared to the core. The incorporation of lignin in CFs leads to increased graphitization, enhanced tensile strength, and a unique skin-core structure, where the skin's graphitized cellulose and lignin contribute stiffness, while the predominantly lignin-rich core enhances carbon content, electrical conductivity, and strength.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289755PMC
http://dx.doi.org/10.1021/acssuschemeng.4c02052DOI Listing

Publication Analysis

Top Keywords

electrical mechanical
8
mechanical properties
8
carbon fibers
8
hkl cellulose
8
electrical conductivity
8
tensile strength
8
fibers
7
cellulose
6
lignin
5
influence hardwood
4

Similar Publications

Mechanically Heterogeneous Architecture Enables Robust and Ultrathin Bioelectronics for High-Fidelity Biosignal Monitoring.

ACS Sens

September 2025

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.

High-fidelity biosignal monitoring is essential for daily health tracking and the diagnosis of chronic diseases. However, developing bioelectrodes capable of withstanding repeated use and mechanical deformation on wet tissue surfaces remains a significant challenge. Here, we present a robust and ultrathin bioelectrode (RUB), featuring a mechanically heterogeneous architecture and a thickness of ∼3 μm.

View Article and Find Full Text PDF

This study presents a comprehensive first-principles and device-performance investigation of alkali metal-based anti-perovskites ZBrO (Z = K, Rb, Cs, and Fr) for advanced optoelectronic and photovoltaic applications. Using density functional theory (DFT) with GGA-PBE and mGGA-rSCAN functionals, we analyzed the structural, electronic, optical, mechanical, phonon, population, and thermoelectric properties of these compounds. All ZBrO materials exhibit direct band gaps and strong optical absorption in the visible-UV spectrum.

View Article and Find Full Text PDF

Scalable Photothermal Superhydrophobic Deicing Coating with Mechanochemical-Thermal Robustness.

ACS Appl Mater Interfaces

September 2025

Department of Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.

Developing scalable and robust deicing coatings is essential for real-world applications, yet current coatings either suffer from intrinsic fragility or low thermal conductivity, limiting sustainability and deicing effectiveness. Here, we report a scalable and durable photothermal superhydrophobic coating coupling with enhanced thermal conductivity, engineered by embedding carbon nanotubes within a perfluoroalkoxy polymer matrix. Our design achieved 97.

View Article and Find Full Text PDF

Zirconium disilicide (ZrSi) ceramics have excellent physical and chemical properties and are employed in aerospace, energy, and chemical industries. Currently, the preparation and properties of ZrSi ceramics have been less studied. To comprehensively study the characteristics of ZrSi ceramics, in this study, dense bulk ZrSi ceramic samples are successfully prepared by the high-pressure-high-temperature (HPHT) sintering technique.

View Article and Find Full Text PDF

Multi-arm rock drilling robots frequently encounter challenges in extreme environments, such as tunnels, where they are subjected to high-frequency impact loads, multi-degree-of-freedom motion coupling, and large-range motion control vibrations. First, we propose a collision-free path planning method that combines an improved genetic algorithm (IGA) and an improved artificial potential field method. This method is based on the kinematic model of the rock drilling robot.

View Article and Find Full Text PDF