A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multi-layered computational gene networks by engineered tristate logics. | LitMetric

Multi-layered computational gene networks by engineered tristate logics.

Cell

Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medic

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

So far, biocomputation strictly follows traditional design principles of digital electronics, which could reach their limits when assembling gene circuits of higher complexity. Here, by creating genetic variants of tristate buffers instead of using conventional logic gates as basic signal processing units, we introduce a tristate-based logic synthesis (TriLoS) framework for resource-efficient design of multi-layered gene networks capable of performing complex Boolean calculus within single-cell populations. This sets the stage for simple, modular, and low-interference mapping of various arithmetic logics of interest and an effectively enlarged engineering space within single cells. We not only construct computational gene networks running full adder and full subtractor operations at a cellular level but also describe a treatment paradigm building on programmable cell-based therapeutics, allowing for adjustable and disease-specific drug secretion logics in vivo. This work could foster the evolution of modern biocomputers to progress toward unexplored applications in precision medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2024.07.001DOI Listing

Publication Analysis

Top Keywords

gene networks
12
computational gene
8
multi-layered computational
4
gene
4
networks engineered
4
engineered tristate
4
tristate logics
4
logics biocomputation
4
biocomputation strictly
4
strictly traditional
4

Similar Publications