98%
921
2 minutes
20
The sequence of monomers within a polymer chain plays a pivotal role in determining the physicochemical properties of the polymer. In the copolymerization of two or more monomers, the arrangement of monomers within the resulting polymer is primarily dictated by the intrinsic reactivity of the monomers. Precisely controlling the monomer sequence in copolymerization, particularly through the manipulation of catalysts, is a subject of intense interest and poses significant challenges. In this study, we report the catalyst-controlled copolymerization of epoxides, -tosyl aziridine (TAz), and cyclic anhydrides. To achieve this, a binary catalyst system comprising a Lewis acid, triethylborane, and Brønsted base, -BuP, was utilized. This system was utilized to regulate the selectivity between two catalytic reactions: ring-opening alternating copolymerization (ROAC) of epoxides/cyclic anhydrides and ROAC of TAz/cyclic anhydrides. Changing the catalyst ratio made it possible to continuously modulate the resulting poly(ester-amide ester) from ABA-type real block copolymers to gradient, random-like, reversed gradient, and reversed BAB-type block-like copolymers. A range of epoxides and anhydrides was investigated, demonstrating the versatility of this polymerization system. Additionally, density functional theory calculations were conducted to enhance our mechanistic understanding of the process. This synthetic method not only provides a versatile means for producing copolymers with comparable chemical compositions but also facilitates the exploration of the intricate relationship between monomer sequences and the resultant polymer properties, offering valuable insights for advancements in polymer science.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c08009 | DOI Listing |
RSC Adv
September 2025
Department of Chemical Engineering and Green Technology, Institute of Chemical Technology (ICT) Mumbai Maharashtra 400019 India
The sustainable synthesis of bio-based monomers from renewable biomass intermediates is a central goal in green chemistry and biorefinery innovation. This study introduces a synergistic catalytic-enzymatic strategy for the efficient and eco-friendly oxidation of 5-hydroxymethylfurfural (5-HMF) into 2,5-furandicarboxylic acid (FDCA), a key monomer for next-generation biodegradable plastics. The catalytic phase employed non-noble metal catalysts, MnO and Co-Mn supported on activated carbon (Co-Mn/AC), under mild batch reaction conditions at 90 °C.
View Article and Find Full Text PDFChem Sci
August 2025
Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai - 400076 India
The supramolecular organization of functional molecules at the mesoscopic level influences their material properties. Typically, planar π-conjugated (disc- or linear-shaped) molecules tend to undergo one-dimensional (1D) stacking, whereas two-dimensional (2D) organization from such building blocks is seldom observed in spite of their technological potential. Herein, we rationally achieve both 1D and 2D organizations from a single planar, π-conjugated molecular system competitive interactions.
View Article and Find Full Text PDFJ Chem Inf Model
September 2025
Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States.
The development of low-cost, high-performance materials with enhanced transparency in the long-wavelength infrared (LWIR) region (800-1250 cm/8-12.5 μm) is essential for advancing thermal imaging and sensing technologies. Traditional LWIR optics rely on costly inorganic materials, limiting their broader deployment.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Sulfidized zero-valent iron (S-ZVI) holds promise in the remediation of chlorinated hydrocarbons. However, S-ZVI is susceptible to corrosion in aquifers with elevated dissolved oxygen (DO) levels. This study demonstrates, for the first time, that a trade-off between the passivation and oxidative corrosion of aged S-ZVI can be achieved in the presence of silicate to promote its dechlorination performance on trichloroethylene.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States.
Distinctive polymer brushes (PBs) play a crucial role in providing a nonpreferential (neutral) surface for vertical orientation of block copolymers (BCPs). This bottom-up approach effectively aligns the formation of vertical lamellar and cylinder lattice structures from the BCP, which is crucial for nanopatterning and other applications. In conventional BCP self-assembly techniques, random copolymer brushes are commonly employed to achieve substrate neutrality.
View Article and Find Full Text PDF