MLPH is a novel adipogenic factor controlling redox homeostasis to inhibit lipid peroxidation in adipocytes.

Biochem Biophys Res Commun

Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34113, South Korea. Electronic address:

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Abnormal adipose tissue formation is associated with metabolic disorders such as obesity, diabetes, and liver and cardiovascular diseases. Thus, identifying the novel factors that control adipogenesis is crucial for understanding these conditions and developing targeted treatments. In this study, we identified the melanosome-related factor MLPH as a novel adipogenic factor. MLPH was induced during the adipogenesis of 3T3-L1 cells and human mesenchymal stem cells. Although MLPH did not affect lipid metabolism, such as lipogenesis or lipolysis, adipogenesis was severely impaired by MLPH depletion. We observed that MLPH prevented excess reactive oxygen species (ROS) accumulation and lipid peroxidation during adipogenesis and in mature adipocytes. In addition, increased MLPH expression was observed under cirrhotic conditions in liver cancer cells and its overexpression also reduced ROS and lipid peroxidation. Our findings demonstrate that MLPH is a novel adipogenic factor that maintains redox homeostasis by preventing lipid peroxidation and ROS accumulation, which could lead to metabolic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.150459DOI Listing

Publication Analysis

Top Keywords

lipid peroxidation
16
mlph novel
12
novel adipogenic
12
adipogenic factor
12
mlph
8
redox homeostasis
8
factor mlph
8
ros accumulation
8
lipid
5
factor
4

Similar Publications

Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.

View Article and Find Full Text PDF

The Hippo signaling pathway is a key regulator of cell growth and cell survival, and hyperactivation of the Hippo pathway has been implicated in neurodegenerative diseases such as Huntington's disease. However, the role of Hippo signaling in Alzheimer's disease (AD) remains unclear. We observed that hyperactivation of Hippo signaling occurred in the AD model 5xFAD mice.

View Article and Find Full Text PDF

In this study, we investigated the therapeutic potential of calycosin (from Astragalus) in Alzheimer's disease (AD), focusing on ferroptosis modulation. APP/PS1 mice received 40 mg/kg calycosin for 3 months. Cognitive function was assessed via Morris water maze test.

View Article and Find Full Text PDF

Ergothioneine as a promising natural antioxidant: bioactivities, therapeutic potential, and industrial applications.

Food Funct

September 2025

Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.

Ergothioneine (EGT) is a naturally occurring thiol-containing amino acid derivative synthesized by certain fungi and bacteria, with humans acquiring it exclusively through dietary intake. It has gained increasing attention due to its exceptional antioxidant, cytoprotective, and metal-chelating properties. EGT shows high stability under physiological conditions and can accumulate in specific tissues the highly selective transporter OCTN1.

View Article and Find Full Text PDF

Dietary n-6 and n-3 polyunsaturated fatty acid (PUFA) balance critically modulates various physiological processes, including inflammation and cell death. This study investigated the effects of different n-6 PUFA ratios (1:1, 5:1, 10:1, 20:1) on ferroptosis in porcine IPEC-J2 intestinal epithelial cells. Cells treated with varying PUFA ratios showed a significant reduction in cell viability, which was alleviated by the ferroptosis inhibitor ferrostatin-1 (fer-1).

View Article and Find Full Text PDF