98%
921
2 minutes
20
In wheat, the transition of the inflorescence meristem to a terminal spikelet (IM→TS) determines the spikelet number per spike (SNS), an important yield component. In this study, we demonstrate that the plant-specific transcription factor LEAFY (LFY) physically and genetically interacts with WHEAT ORTHOLOG OF APO1 (WAPO1) to regulate SNS and floret development. Loss-of-function mutations in either or both genes result in significant and similar reductions in SNS, as a result of a reduction in the rate of spikelet meristem formation per day. SNS is also modulated by significant genetic interactions between LFY and the SQUAMOSA MADS-box genes VRN1 and FUL2, which promote the IM→TS transition. Single-molecule fluorescence in situ hybridization revealed a downregulation of LFY and upregulation of the SQUAMOSA MADS-box genes in the distal part of the developing spike during the IM→TS transition, supporting their opposite roles in the regulation of SNS in wheat. Concurrently, the overlap of LFY and WAPO1 transcription domains in the developing spikelets contributes to normal floret development. Understanding the genetic network regulating SNS is a necessary first step to engineer this important agronomic trait.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317094 | PMC |
http://dx.doi.org/10.1242/dev.202803 | DOI Listing |
Folia Microbiol (Praha)
September 2025
Soil Science Division, Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh.
The aim of the study was to reduce the chemical fertilizers with microbial inoculant-rich vermicompost, which enhanced the growth, flowering, and soil health of the tuberose crop. A total of six treatments were applied with reducing doses of synthetic fertilizers under a factorial randomized design and replicated thrice. In this study, vermicompost (VC) made from cow dung and vegetable waste utilizing Eisenia foetida and their mixed biomass were enriched with microbial inoculants and assessed for their impact on microbial and enzymatic populations including urease, acid phosphatase activity and dehydrogenase activity in soil, nutrient availability, and tuberose development and flowering.
View Article and Find Full Text PDFPlant Sci
September 2025
Institute of Chinese Medicinal Materials, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China. Electronic address:
Although floral morphology in ornamental chrysanthemums has been widely investigated, its genetic basis in medicinal varieties such as Chrysanthemum morifolium cv. 'Hangju' remains largely unexplored, despite its direct relevance to both capitulum development and medicinal quality. To address this gap, we performed transcriptome profiling of ray and disc florets from wild-type and mutant plants, which led to the identification of two MYB-related transcription factor genes, CmDIV-like and CmRAD1, as differentially expressed and potentially associated with altered floral symmetry.
View Article and Find Full Text PDFSci Rep
August 2025
Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Iran.
In cut stock (Matthiola incana L.), inflorescence bending is primarily caused by the bending moment generated by the weight of the floral structure. This phenomenon results in drooping of inflorescence onto neighboring plants, diminishing ornamental quality and increased space requirements among plants.
View Article and Find Full Text PDFJ Adv Res
August 2025
Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China. Electronic address:
Introduction: Contamination of cereal grains by deoxynivalenol (DON) poses a significant threat to food safety. This toxic secondary metabolite, produced by F. graminearum, acts as a virulent factor to promote mycelium spread in plant tissue.
View Article and Find Full Text PDFSci Rep
August 2025
College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
Boron is a critical yet poorly understood micronutrient, especially regarding its transport within plant leaves. Little research has been done to enhance the bioavailability of Boron in rice using organic compounds like fulvic acid for better nutrient quality and yield. While fulvic acid (FA) is well-known for enhancing the mobility of metallic nutrients like iron (Fe) and zinc (Zn), however, its role in facilitating Boron, a metalloid, remains unclear.
View Article and Find Full Text PDF