98%
921
2 minutes
20
Poly(proline) II helical motifs located at the protein-water interface stabilize the three-dimensional structures of natural proteins. Reported here is the first example of synthetic biomimetic poly(proline)-stabilized polypeptide nanostructures obtained by a straightforward ring-opening polymerization-induced self-assembly (ROPISA) process through consecutive -carboxyanhydride (NCA) polymerization. It was found that the use of multifunctional 8-arm initiators is critical for the formation of nanoparticles. Worm-like micelles as well as spherical morphologies were obtained as confirmed by dynamic light scattering (DLS), transmission electron microscopy (TEM), and small angle X-ray scattering (SAXS). The loading of the nanostructures with dyes is demonstrated. This fast and open-vessel procedure gives access to amino acids-based nanomaterials with potential for applications in nanomedicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340022 | PMC |
http://dx.doi.org/10.1021/acsmacrolett.4c00400 | DOI Listing |
Allergol Immunopathol (Madr)
September 2025
Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran;
Asthma, a respiratory tract disease, is characterized by inflammation and obstruction of airway. Inflammatory cells play a significant role in allergic asthma, and there is no complete cure for asthma. One of the new approaches in medicines is nanoparticle-base treatment.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China.
A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.
View Article and Find Full Text PDFCrit Rev Ther Drug Carrier Syst
September 2025
Department of Pharmacology, PSG College of Pharmacy, Coimbatore 641004, Tamil Nadu, India.
Treating neurological disorders is challenging due to the blood-brain barrier (BBB), which limits therapeutic agents, including proteins and peptides, from entering the central nervous system. Despite their potential, the BBB's selective permeability is a significant obstacle. This review explores recent advancements in protein therapeutics for BBB-targeted delivery and highlights computational tools.
View Article and Find Full Text PDFClin Exp Dent Res
October 2025
Laboratory of Experimental Physiopathology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina state, Brazil.
Objectives: This study aimed to compare the effects of silver nanoparticles (AgNPs) synthesized with Curcumin (Curcuma longa L.) or Açai (Euterpe oleracea) versus a commercial treatment and photobiomodulation in rat palatal wounds.
Methods: In vitro cell viability tests assessed nanoparticle toxicity.
J Pept Sci
October 2025
Institute of Technology, University of Tartu, Tartu, Estonia.
The development of therapeutic small interfering RNAs (siRNAs) has lately gained significant momentum due to their ability to silence genes in a highly specific manner. The main obstacle withholding the wider translation of siRNA-based drug modalities is their limited half-life and poor bioavailability, especially in extra-hepatic tissues. Consequently, various drug delivery systems (DDSs) have been developed to improve the delivery of siRNAs, including short delivery peptides called cell-penetrating peptides (CPPs).
View Article and Find Full Text PDF