Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Disruptions of axonal connectivity are thought to be a core pathophysiological feature of psychotic illness, but whether they are present early in the illness, prior to antipsychotic exposure, and whether they can predict clinical outcome remain unknown.

Methods: We acquired diffusion-weighted magnetic resonance images to map structural connectivity between each pair of 319 parcellated brain regions in 61 antipsychotic-naïve individuals with first-episode psychosis (15-25 years, 46% female) and a demographically matched sample of 27 control participants. Clinical follow-up data were also acquired in patients 3 and 12 months after the scan. We used connectome-wide analyses to map disruptions of inter-regional pairwise connectivity and connectome-based predictive modeling to predict longitudinal change in symptoms and functioning.

Results: Individuals with first-episode psychosis showed disrupted connectivity in a brainwide network linking all brain regions compared with controls (familywise error-corrected p = .03). Baseline structural connectivity significantly predicted change in functioning over 12 months (r = 0.44, familywise error-corrected p = .041), such that lower connectivity within fronto-striato-thalamic systems predicted worse functional outcomes.

Conclusions: Brainwide reductions of structural connectivity exist during the early stages of psychotic illness and cannot be attributed to antipsychotic medication. Moreover, baseline measures of structural connectivity can predict change in patient functional outcomes up to 1 year after engagement with treatment services.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2024.07.016DOI Listing

Publication Analysis

Top Keywords

structural connectivity
16
first-episode psychosis
12
connectivity
9
psychotic illness
8
brain regions
8
individuals first-episode
8
familywise error-corrected
8
error-corrected p =
8
brainwide anatomical
4
anatomical connectivity
4

Similar Publications

Background: Labor shortages in health care pose significant challenges to sustaining high-quality care for people with intellectual disabilities. Social robots show promise in supporting both people with intellectual disabilities and their health care professionals; yet, few are fully developed and embedded in productive care environments. Implementation of such technologies is inherently complex, requiring careful examination of facilitators and barriers influencing sustained use.

View Article and Find Full Text PDF

Objective: Aim: The purpose was to identify the morphological features of the great saphenous vein in patients with chronic venous disease of the lower extremities undergoing treatment with endovenous high-frequency electric welding in automatic mode, endovenous laser ablation, and ultrasound-guided microfoam sclerotherapy.

Patients And Methods: Materials and Methods: The material for the comprehensive morphological study consisted of fragments of the great saphenous vein obtained from 32 patients with chronic venous disease of the lower extremities. The material was divided into three groups according to the endovenous treatment techniques applied.

View Article and Find Full Text PDF

Core-Periphery Detection in Multilayer Networks.

Phys Rev Lett

August 2025

Gran Sasso Science Institute, The University of Edinburgh, School of Mathematics, Edinburgh EH93FD, United Kingdom and School of Mathematics, 67100 L'Aquila, Italy.

Multilayer networks provide a powerful framework for modeling complex systems that capture different types of interactions between the same set of entities across multiple layers. Core-periphery detection involves partitioning the nodes of a network into core nodes, which are highly connected across the network, and peripheral nodes, which are densely connected to the core but sparsely connected among themselves. In this paper, we propose a new model of core-periphery structure in multilayer networks and a nonlinear spectral method that simultaneously detects the corresponding core and periphery structures of both nodes and layers in weighted and directed multilayer networks.

View Article and Find Full Text PDF

Cortical networks with multiple interneuron types generate oscillatory patterns during predictive coding.

PLoS Comput Biol

September 2025

Faculty of Science, Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.

Predictive coding (PC) proposes that our brains work as an inference machine, generating an internal model of the world and minimizing predictions errors (i.e., differences between external sensory evidence and internal prediction signals).

View Article and Find Full Text PDF

Quantum low-density parity-check (QLDPC) codes offer a promising path to low-overhead fault-tolerant quantum computation but lack systematic strategies for exploration. In this Letter, we establish a topological framework for studying the bivariate-bicycle codes, a prominent class of QLDPC codes tailored for real-world quantum hardware. Our framework enables the investigation of these codes through universal properties of topological orders.

View Article and Find Full Text PDF