98%
921
2 minutes
20
Bacteriophages (phages) have gained considerable attention as effective antimicrobial agents that infect and kill pathogenic bacteria. Based on this feature, phages have been increasingly used to achieve food safety. They are stored in a medium or buffer to ensure stability; however, they cannot be directly applied to food under these conditions due to reasons such as regulatory considerations and concerns about marketability. This study developed a stabilizing solution that allowed the maintenance of phage activity for extended periods at room temperature while being directly applicable to food. The stability of phages stored in distilled water was relatively low. However, adding a stabilizer composed of sugars and salts improved the survival rates of phages significantly, resulting in stability for up to 48 weeks at room temperature. When O157:H7-contaminated vegetables were washed with tap water containing phages, the phages reduced the pathogenic count by over 90% compared with washing with tap water alone. Additionally, when pathogenic -contaminated vegetables were placed in a phage-coated container and exposed to water, the coating of the container dissolved, releasing phages and lysing the pathogenic . This led to a significant 90% reduction in pathogenic contamination compared to that after water rinsing. These results suggest an effective and economical method for maintaining phage activity and establishing the potential for commercialization through application in the food industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281399 | PMC |
http://dx.doi.org/10.3390/v16071155 | DOI Listing |
J Am Chem Soc
September 2025
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina 49, GSP-445, Nizhny Novgorod 603950, Russia.
In this work, an approach enabling the synthesis of η-alkene lithium complexes (Carb)Li(η-L) (L = 1-octene, cyclohexene) is elaborated. For 1,5-hexadiene, the same approach results in a binuclear μ-η:η-diene complex. The QTAIM parameters reveal the electrostatic nature of the Li-alkene interaction.
View Article and Find Full Text PDFmBio
September 2025
Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA.
The human fungal pathogen changes its morphology in response to temperature. At 37°C, it grows as a budding yeast, whereas at room temperature (RT), it transitions to hyphal growth. Prior work has demonstrated that 15-20% of transcripts are temperature-regulated, and that transcription factors (TFs) Ryp1-4 are necessary to establish yeast growth.
View Article and Find Full Text PDFInorg Chem
September 2025
Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
Isovalent anion substitution has been shown to have a tremendous effect on the transport properties in lithium halide solid ionic conductors. Although sodium-ion solid state batteries based on chloride ionic conductors have recently gathered significant attention, investigations of anion substitution in sodium containing chlorides remain scarce. Here, we investigate the role of Br isoelectronic anion substitution in a perovskite-related compound with nominal composition of NaTaCl.
View Article and Find Full Text PDFSmall
September 2025
School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
Thermoelectric technology has significant applications in waste heat harvesting and temperature control of electronic devices. PbS has long been seen as a robust candidate for large-scale thermoelectric applications due to its low cost and high mechanical strength. However, the low ZT near room temperature hinders its further application.
View Article and Find Full Text PDF