Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate quantification of amyloid positron emission tomography (PET) is essential for early detection of and intervention in Alzheimer's disease (AD) but there is still a lack of studies comparing the performance of various automated methods. This study compared the PET-only method and PET-and-MRI-based method with a pre-trained deep learning segmentation model. A large sample of 1180 participants in the Catholic Aging Brain Imaging (CABI) database was analyzed to calculate the regional standardized uptake value ratio (SUVR) using both methods. The logistic regression models were employed to assess the discriminability of amyloid-positive and negative groups through 10-fold cross-validation and area under the receiver operating characteristics (AUROC) metrics. The two methods showed a high correlation in calculating SUVRs but the PET-MRI method, incorporating MRI data for anatomical accuracy, demonstrated superior performance in predicting amyloid-positivity. The parietal, frontal, and cingulate importantly contributed to the prediction. The PET-MRI method with a pre-trained deep learning model approach provides an efficient and precise method for earlier diagnosis and intervention in the AD continuum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11276670PMC
http://dx.doi.org/10.3390/ijms25147649DOI Listing

Publication Analysis

Top Keywords

method pre-trained
8
pre-trained deep
8
deep learning
8
pet-mri method
8
methods
5
method
5
comparative analysis
4
analysis automated
4
automated quantification
4
quantification methods
4

Similar Publications

Background: The use of artificial intelligence platforms by medical residents as an educational resource is increasing. Within orthopaedic surgery, older Chat Generative Pre-trained Transformer (ChatGPT) models performed worse than resident physicians on practice examinations and rarely answered questions with images correctly. The newer ChatGPT-4o was designed to improve these deficiencies but has not been evaluated.

View Article and Find Full Text PDF

Integrating clinical anxiety scales with pre-trained language models for anxiety recognition on social media.

Health Inf Sci Syst

December 2025

Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000 China.

Leveraging natural language processing to identify anxiety states from social media has been widely studied. However, existing research lacks deep user-level semantic modeling and effective anxiety feature extraction. Additionally, the absence of clinical domain knowledge in current models limits their interpretability and medical relevance.

View Article and Find Full Text PDF

Background: Undifferentiated pleomorphic sarcoma (UPS) is a prevalent soft tissue sarcoma subtype associated with poor prognosis. Current prognostic tools lack the ability to incorporate personalized data for predicting survival. Machine learning (ML) offers a potential solution to enhance survival prediction accuracy.

View Article and Find Full Text PDF

Inter-modality feature prediction through multimodal fusion for 3D shape defect detection.

Neural Netw

September 2025

School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.

3D shape defect detection plays an important role in autonomous industrial inspection. However, accurate detection of anomalies remains challenging due to the complexity of multimodal sensor data, especially when both color and structural information are required. In this work, we propose a lightweight inter-modality feature prediction framework that effectively utilizes multimodal fused features from the inputs of RGB, depth and point clouds for efficient 3D shape defect detection.

View Article and Find Full Text PDF

Cervical cancer remains a significant cause of female mortality worldwide, primarily due to abnormal cell growth in the cervix. This study proposes an automated classification method to enhance detection accuracy and efficiency, addressing contrast and noise issues in traditional diagnostic approaches. The impact of image enhancement on classification performance is evaluated by comparing transfer learning-based Convolutional Neural Network (CNN) models trained on both original and enhanced images.

View Article and Find Full Text PDF