Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The global promotion of decarbonisation through the circular solutions and (re)use of bio-based resources (BBR), waste streams, notably from the agricultural, forest and municipal sectors has steadily increased in recent decades. Among the transformative solutions offered by BBR, biosolids (BS), biochars (BC), and bioashes (BA) specifically attract scientific attention due to their highly complex organo-mineral matrices, which present significant potential for recovery in the agro-/forest-ecosystems. These materials enhance various soil (i) chemical (pH, macro/micro nutrient concentrations, organic matter content), (ii) physical (porosity, water-air relations, compaction) or (iii) microbial (diversity, activity) properties. Furthermore, some of transformed BBR contribute to a multitude of environmental services such as the remediation of contaminated sites and wastewater treatment, employing cost-effective and eco-friendly approaches that align with circular economy/waste management principles, ultimately contributing to climate change mitigation. However, several challenges impede the widespread utilization/transformation of BBR, including technological limitations in processing and application, concerns about contamination (, PAHs, PCBs, micro/nano plastics present in BS), toxicity issues (, heavy metals in BA or nanoparticles in BC), and regulatory constraints (, non-uniform regulations governing the reuse of BA and BS). Addressing these challenges demands an interdisciplinary and intersectoral approach to fully unlock the potential of BBR in sustainable decarbonisation efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271217PMC
http://dx.doi.org/10.1039/d4ra03506bDOI Listing

Publication Analysis

Top Keywords

bio-based resources
8
circular solutions
8
bbr
5
resources systemic
4
systemic circular
4
solutions agroenvironmental
4
agroenvironmental services
4
services global
4
global promotion
4
promotion decarbonisation
4

Similar Publications

In the modern era, polymyrcene, a sustainable polymer made from renewable resources, offers a potential path towards the advancement of green products. Here, we successfully created and characterized the first-ever all-bio-based composite films using cellulose nanocrystals (CNCs) made from agricultural waste, polylactic acid (PLA), and polymyrcene. Environmentally acceptable substitutes for traditional polymer composites have been made possible by incorporating CNCs into the PLA-Polymyrcene matrix, which produced materials with improved structural and functional qualities.

View Article and Find Full Text PDF

Mechanistic analysis of lignocellulosic biomass saccharification by the filamentous fungus Talaromyces cellulolyticus.

Biosci Biotechnol Biochem

September 2025

Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.

Lignocellulosic biomass is a carbon-neutral resource crucial to advancing a bio-based economy. The filamentous fungus Talaromyces cellulolyticus demonstrates superior biomass saccharification efficiency compared to conventional enzyme-producing fungi, making it a promising host for enzymatic biomass conversion. To enable molecular studies, we developed a robust genetic transformation system for T.

View Article and Find Full Text PDF

Cellulosic Flexible Electronic Materials: Recent Advances in Structural Design, Functionalization, and Smart Applications.

Macromol Rapid Commun

September 2025

Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, P. R. China.

Rapid advancement of flexible electronics has generated a demand for sustainable materials. Cellulose, a renewable biopolymer, exhibits exceptional mechanical strength, customizable properties, biodegradability, and biocompatibility. These attributes are largely due to its hierarchical nanostructures and modifiable surface chemistry.

View Article and Find Full Text PDF

The construction sector faces the daunting task of meeting growing construction demand with a 'zero-emission resource pool'-materials that are compatible with a near-future zero-emissions economy. Most decarbonisation roadmaps and scenario analyses for the sector depend heavily on high-risk technologies such as carbon storage that have not yet been deployed at significant scale, or favour recycling whilst overlooking likely constraints from limited supplies of zero-emissions electricity. This paper therefore provides a first critical review of options to supply construction materials in the UK with realistic expectations about the availability of carbon storage, zero-emissions electricity and zero-emissions transport.

View Article and Find Full Text PDF

Sustainable bio-based film based on chitosan resin crosslinking with tannin, phytic acid and octadecylamine for food packaging application.

Int J Biol Macromol

September 2025

Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, People's Republic of China. Electronic address:

Chitosan and tannin are both promising renewable materials for food packaging; however, their effectiveness is limited by incomplete interactions between them. Therefore, phytic acid and octadecylamine were employed to create chitosan-tannin-phytic acid-octadecylamine (CTPO) films that are flame-retardant, UV-resistant, antibacterial and hydrophobic for food packaging applications. The findings indicate that the CTPO film exhibited excellent hydrophobicity and mechanical properties, with a water contact angle of 133.

View Article and Find Full Text PDF