Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Purpose: The novel MR imaging technique of vascular architecture mapping allows in vivo characterization of local changes in cerebral microvasculature, but reference ranges for vascular architecture mapping parameters in healthy brain tissue are lacking, limiting its potential applicability as an MR imaging biomarker in clinical practice. We conducted whole-brain vascular architecture mapping in a large cohort to establish vascular architecture mapping parameter references ranges and identify region-specific cortical and subcortical microvascular profiles.

Materials And Methods: This was a single-center examination of adult patients with unifocal, stable low-grade gliomas with multiband spin- and gradient-echo EPI sequence at 3T using parallel imaging. Voxelwise plotting of resulting values for gradient-echo (R*) versus spin-echo (R) relaxation rates during contrast agent bolus administration generates vessel vortex curves that allow the extraction of vascular architecture mapping parameters representative of, eg, vessel type, vessel radius, or CBV in the underlying voxel. Averaged whole-brain parametric maps were calculated for 9 parameters, and VOI analysis was conducted on the basis of a standardized brain atlas and individual cortical GM and WM segmentation.

Results: Prevalence of vascular risk factors among subjects ( = 106; mean age, 39.2 [SD, 12.5] years; 56 women) was similar to those in the German population. Compared with WM, we found cortical GM to have larger mean vascular calibers (5.80 [SD, 0.59] versus 4.25 [SD, 0.62] < .001), increased blood volume fraction (20.40 [SD, 4.49] s versus 11.05 [SD, 2.44] s; < .001), and a dominance of venous vessels. Distinct microvascular profiles emerged for cortical GM, where vascular architecture mapping vessel type indicator differed, eg, between the thalamus and cortical GM (mean, -2.47 [SD, 4.02] s versus -5.41 [SD, 2.84] s; < .001). Intraclass correlation coefficient values indicated overall high test-retest reliability for vascular architecture mapping parameter mean values when comparing multiple scans per subject.

Conclusions: Whole-brain vascular architecture mapping in the adult brain reveals region-specific microvascular profiles. The obtained parameter reference ranges for distinct anatomic and functional brain areas may be used for future vascular architecture mapping studies on cerebrovascular pathologies and might facilitate early discovery of microvascular changes, in, eg, neurodegeneration and neuro-oncology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392379PMC
http://dx.doi.org/10.3174/ajnr.A8344DOI Listing

Publication Analysis

Top Keywords

vascular architecture
24
architecture mapping
24
whole-brain vascular
8
mapping parameters
8
vascular
7
architecture
6
mapping
6
mapping identifies
4
identifies region-specific
4
region-specific microvascular
4

Similar Publications

Vascularization of implanted biomaterials is critical to reconstructive surgery and tissue engineering. Ultimately, the goal is to promote a rapidly perfusable hierarchical microvasculature that persists with time and can meet underlying tissue needs. We have previously shown that using a microsurgical technique, termed micropuncture (MP), in combination with porous granular hydrogel scaffolds (GHS) fabricated via interlinking hydrogel microparticles (microgels) results in a rapidly perfusable patterned microvasculature.

View Article and Find Full Text PDF

Background: Nodular hidradenoma (NH) is a rare benign adnexal tumor originating from sweat glands, often misdiagnosed due to nonspecific clinical manifestations. Ultrasonography (US) plays a critical role in the diagnosis of skin tumors, yet systematic descriptions of its sonographic features remain limited.

Objective: This study aims to investigate the very-high-frequency (VHF) characteristics of eccrine nodular hidradenoma (ENH) and establish key imaging criteria to differentiate it from other cutaneous/subcutaneous lesions.

View Article and Find Full Text PDF

Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.

View Article and Find Full Text PDF

The Balkan Peninsula is a European biodiversity hotspot, home to 6,500 native vascular plant species, many of which are endemic. The region has diverse range of climates and complex topography, creating conditions that suit many woody ornamental, fruit, and forest species. Nevertheless, climate change, habitat destruction, invasive species, plant diseases, and agricultural practices threaten natural ecosystems and cultivated species.

View Article and Find Full Text PDF

This study aimed to develop an acellular dermal matrix derived from tilapia skin and evaluate its potential as a bioscaffold for skin wound repair. Structural and compositional changes before and after decellularisation were assessed through histological staining, electron microscopy and immunological analysis. The matrix exhibited low immunogenicity, preserved extracellular matrix architecture and retained key bioactive components.

View Article and Find Full Text PDF