Isoliquiritigenin alleviates experimental autoimmune encephalomyelitis by modulating inflammatory and neuroprotective reactive astrocytes.

Biomed Pharmacother

Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi 710119, China; College of Life Sciences, Sh

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multiple sclerosis (MS) is an autoimmune-mediated chronic inflammatory demyelinating disease of the central nervous system (CNS) that poses significant treatment challenges. Currently, it is believed that inflammatory and neuroprotective reactive astrocytes, along with other resident CNS cells and immune cells, contribute to the pathophysiology of MS. In our study, we found that isoliquiritigenin (ILG), a bioactive chalcone compound, significantly reduces the clinical scores of experimental autoimmune encephalomyelitis (EAE) by 44 % (P < 0.05). Additionally, ILG significantly decreases the pathological scores of spinal cord inflammation and demyelination by 61 % and 65 %, respectively (both P < 0.0001). Furthermore, ILG affects the populations of CD4, Th1, Th17, and Treg cells in vivo. More importantly, ILG significantly promotes the activation of astrocytes in EAE (P < 0.0001). Additionally, ILG treatment indirectly inhibits inflammatory reactive astrocytes and promotes neuroprotective reactive astrocytes. It reduces spleen levels of TNFα, IL1α, C1qa, IL1β, and IL17A by 95 % (P < 0.001), 98 % (P < 0.01), 46 % (P < 0.05), 97 % (P < 0.001), and 60 % (P < 0.001), respectively. It also decreases CNS levels of TNFα, IL1α, C1qa, IL1β, and IL17A by 53 % (P < 0.05), 88 % (P < 0.05), 64 % (P < 0.01), 57 % (P < 0.05), and 60 % (P < 0.001), respectively. These results indicate that ILG exerts an immunoregulatory effect by inhibiting the secretion of pro-inflammatory cytokines. Consequently, ILG inhibits inflammatory reactive astrocytes, promotes neuroprotective reactive astrocytes, alleviates inflammation and improves EAE. These findings provide a theoretical basis and support for the application of ILG in the prevention and treatment of MS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117188DOI Listing

Publication Analysis

Top Keywords

reactive astrocytes
24
neuroprotective reactive
16
experimental autoimmune
8
autoimmune encephalomyelitis
8
inflammatory neuroprotective
8
ilg
8
additionally ilg
8
inhibits inflammatory
8
inflammatory reactive
8
astrocytes promotes
8

Similar Publications

PFGA12 ameliorates Hypoxic-Ischemic brain injury by directly regulating PRDX1 and inhibiting ferroptosis.

Biochem Pharmacol

September 2025

Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China. El

Hypoxic-ischemic brain damage (HIBD) is a severe condition leading to extensive neuronal loss and functional impairments, representing a significant challenge in neonatal care. PFGA12, a peptide derived from fibrinogen alpha chain (FGA), which is notably downregulated in the umbilical cord blood of hypoxic-ischemic encephalopathy (HIE) infants. We demonstrate that PFGA12 significantly enhances cell viability and mitigates oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuronal cell death.

View Article and Find Full Text PDF

Mutations in the human ADAR gene encoding adenosine deaminase acting on RNA 1 (ADAR1) cause Aicardi-Goutières syndrome 6 (AGS6); a severe auto-inflammatory encephalopathy with aberrant interferon (IFN) induction. AdarΔ2-13 null mutant mouse embryos lacking ADAR1 protein die with high levels of IFN-stimulated gene (ISG) transcripts. In Adar Mavs double mutants also lacking the Mitochondrial antiviral signaling (MAVS) adaptor, the aberrant IFN induction is prevented.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the leading causes of dementia in the elderly, and no effective treatment is currently available. Cathepsin B (CTSB) is involved in key pathological processes of AD, but the underlying mechanisms and its relevance to AD diagnosis and treatment remain unclear. In the present study, we found that CTSB expression was abnormally elevated in the hippocampus of 3×Tg mice and was regulated by miR-96-5p.

View Article and Find Full Text PDF

Reactive astrogliosis and microgliosis in animal models of focally induced seizures: A systematic review and multivariate multilevel meta-analysis.

Epilepsy Behav

September 2025

Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany; Einstein Center for Neurosciences (ECN), Charité - Universitätsmedizin Berlin, Germany. Electronic address:

Reactive astrogliosis and microgliosis are hallmarks of various central nervous system (CNS) diseases, including epilepsy. Both are observed following seizures in various models of epilepsy. We conducted a systematic meta-analysis to synthesize current knowledge on reactive astrogliosis and microgliosis in animal models involving experimentally induced seizures using a multilevel approach to analyze 260 comparisons from 52 studies.

View Article and Find Full Text PDF

Purpose: Astrocyte reactivation can be assessed using positron emission tomography (PET) ligands targeting monoamine oxidase B (MAO-B). C-SL25.1188 binds reversibly to MAO-B, allowing precise density measurements, but requires invasive arterial sampling.

View Article and Find Full Text PDF