98%
921
2 minutes
20
Purpose: AML is a hematologic cancer that is clinically heterogeneous, with a wide range of clinical outcomes. DNA methylation changes are a hallmark of AML but are not routinely used as a criterion for risk stratification. The aim of this study was to explore DNA methylation markers that could risk stratify patients with cytogenetically normal AML (CN-AML), currently classified as intermediate-risk.
Materials And Methods: DNA methylation profiles in whole blood samples from 77 patients with CN-AML in The Cancer Genome Atlas (LAML cohort) were analyzed. Individual 5'-cytosine-phosphate-guanine-3' (CpG) sites were assessed for their ability to predict overall survival. The output was validated using DNA methylation profiles from bone marrow samples of 79 patients with CN-AML in a separate data set from the Gene Expression Omnibus.
Results: In the training set, using DNA methylation data derived from the 450K array, we identified 2,549 CpG sites that could potentially distinguish patients with CN-AML with an adverse prognosis () from those with a more favorable prognosis () independent of age. Of these, 25 CpGs showed consistent prognostic potential across both the 450K and 27K array platforms. In a separate validation data set, nine of these 25 CpGs exhibited statistically significant differences in 2-year survival. These nine validated CpGs formed the basis for a combined prognostic biomarker panel, which includes an 8-CpG Somatic Panel and the methylation status of cg23947872. This panel displayed strong predictive ability for 2-year survival, 2-year progression-free survival, and complete remission in the validation cohort.
Conclusion: This study highlights DNA methylation profiling as a promising approach to enhance risk stratification in patients with CN-AML, potentially offering a pathway to more personalized treatment strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371081 | PMC |
http://dx.doi.org/10.1200/CCI.23.00265 | DOI Listing |
Front Genet
August 2025
Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
Background: Prostatic diseases, consisting of prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer (PCa), pose significant health challenges. While single-omics studies have provided valuable insights into the role of mitochondrial dysfunction in prostatic diseases, integrating multi-omics approaches is essential for uncovering disease mechanisms and identifying therapeutic targets.
Methods: A genome-wide meta-analysis was conducted for prostatic diseases using the genome-wide association studies (GWAS) data from FinnGen and UK Biobank.
NAR Cancer
September 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
Noncoding RNAs play pivotal roles in tumorigenesis and cancer progression. Recent evidence has identified vault RNAs (vtRNAs) as critical regulators of cellular homeostasis. The human genome encodes four vtRNA paralogs, which are differentially expressed in cancer tissues and contribute to tumor development.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Stem Cell Research Center, Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, China.
Bladder cancer (BC) is a disease that predominantly affects older adults, with aging playing a critical role in its onset and progression. Age-associated phenomena, including immunosenescence and chronic inflammation, form a pro-tumor milieu, while genomic instability and epigenetic drift further increase cancer risk. The review highlights the dual role of DNA methylation in BC: global hypomethylation can activate transposable elements and oncogenes, whereas focal hypermethylation silences tumor-suppressor genes like CDKN2A, especially detrimental in older tissues that rely on these genes for senescence control.
View Article and Find Full Text PDFOncol Res
September 2025
Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo León (UANL), Monterrey, 64460, Mexico.
Emerging evidence highlights the potential of bioactive compounds, particularly polyphenols, as adjunctive therapeutic agents in the treatment of pancreatic cancer (PC), one of the most aggressive malignancies. This review focuses on epigallocatechin gallate (EGCG) and resveratrol due to their extensively documented anticancer activity, favorable safety profiles, and their unique ability to modulate multiple signaling pathways relevant to pancreatic tumorigenesis. Among polyphenols, these two have shown superior anti-cancer activity, epigenetic regulatory effects, and synergy with standard chemotherapies in preclinical pancreatic cancer models.
View Article and Find Full Text PDFACS Omega
September 2025
Genetics and Cellular Biology Laboratory, Center for Biodiversity Studies, Federal University of Pará, Belém 66075-110, Pará, Brazil.
Histone genes contain sequences responsible for coding five types of proteins (H1, H2A, H2B, H3, and H4) that are of great importance for chromatin organization. Their transcriptional regulation through DNA methylation has been little studied. Testudines are ancient reptiles with high cytogenetic diversity (2 = 26-68), with a large number of histone gene loci in their karyotype.
View Article and Find Full Text PDF