Effectiveness of freezing temperatures on dormancy release of temperate woody species.

Ann Bot

Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: Spring phenological change of plants in response to global warming may affect many ecological processes and functions. Chilling temperature regulates budburst date by releasing dormancy. However, whether freezing temperatures (<0 °C) contribute to dormancy release remains of debate. Our poor understanding of the role of chilling makes estimating shifts in budburst date difficult.

Methods: A 2-year chilling-forcing experiment was explicitly designed to test the effects of chilling temperatures on dormancy release of nine temperate woody species in Beijing, China. A total of 1620 twigs were first exposed to a wide range of temperatures (-10 to 10 °C) with different durations and then moved to growth chambers. Based on budburst data in experimental conditions, we examined whether freezing temperatures are effective on dormancy release. We also developed a new framework for constructing chilling functions based on the curve between chilling duration and forcing requirement (FR) of budburst. The chilling function derived from this framework was not affected by experimental forcing conditions.

Key Results: We demonstrated that freezing temperatures down to -10 °C were effective in dormancy release. The rate of dormancy release, indicated by the rate of decay in the chilling duration-FR curve, did not differ significantly between chilling temperatures in most cases, although it exhibited a maximum value at 0 or 5 °C. The chilling function-associated phenological models could simulate budburst date from independent experimental and observational data with a mean RMSE of 7.07 d.

Conclusions: The effective freezing temperatures found here are contrary to the well-known assumption of <0 °C temperature generally not contributing to accumulated chilling in many previous chilling functions. A chilling function assuming that temperature below an upper temperature threshold has the same effects on dormancy release could be adopted to calculate chilling accumulation when using experiments to develop spring phenological models based on the chilling-forcing relationship.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523621PMC
http://dx.doi.org/10.1093/aob/mcae112DOI Listing

Publication Analysis

Top Keywords

freezing temperatures
8
effectiveness freezing
4
temperatures dormancy
4
dormancy release
4
release temperate
4
temperate woody
4
woody species
4
species background
4
background aims
4
aims spring
4

Similar Publications

MicroRNAs (miRNAs) are considered more stable than mRNA, but the impact of progressive thawing of biological samples after freezing as may happen during shipping delays has not been quantified. To address this, we utilized digital PCR to estimate the absolute concentrations of select miRNAs following progressive thawing of human plasma and maintenance at ambient temperature. Specifically, we quantified let-7b-3p, miR-144-5p, miR-150-5p, miR-517a-3p, miR-524-5p, and miR-1283, which have varying abundance in plasma.

View Article and Find Full Text PDF

Evaluation of a nucleic acid preservation protocol for microbiome studies involving samples from the oral cavity.

J Microbiol Methods

September 2025

Dynamics of Respiratory Infections Group, Helmholtz Centre for Infection Research-HZI Braunschweig, Braunschweig, Germany; Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany.

Purpose: The accuracy of oral microbiome research depends significantly on specimen sampling protocols, as well as their storage and preservation. Traditional methods, such as freezing, may not only involve logistical hurdles but can also impact the quality of microbial data, leading to difficulties in the comparability between different studies. This study evaluates the effectiveness of the room temperature nucleic acid preservation protocol using DNA/RNA Shield buffer as compared to standard freezing in preserving oral microbial communities over the course of 7 days.

View Article and Find Full Text PDF

Study on the high viscosity and gel-prone properties of glycine-amidated pectin and its regulatory role on the freeze-thaw stability of sea bass surimi.

Food Chem

September 2025

The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China; Food Science Research Institute of Zhangzhou, Minnan Normal University, Zhangzhou 363000, China. Electronic address:

An ultra-low temperature (-5 °C) enzymatic method was employed to prepare glycine-amidated pectin (Gly-Pe) and evaluate its physicochemical properties and freeze-thaw protection mechanism in surimi. After glycine grafting (12.77 %), amide bonds disrupted pectin's crystalline structure and enhanced molecular chain flexibility.

View Article and Find Full Text PDF

Cellulose-based aerogels modulate fragrance adsorption and controlled release by carbonization/in-situ aromatization.

Carbohydr Polym

November 2025

Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450000, China. Electronic address:

Fragrances are indispensable additives in consumer products including foods, cosmetics, and tobacco products. However, their inherent instability leads to rapid quality degradation and performance loss, driving the urgent need for controlled-release systems to stabilize fragrance performance. In this work, cellulose nanofibers (CNF) were used to prepare CNF aerogel-like gels (CA) and carbonized CNF aerogels (C-CA) through freeze-drying and high-temperature carbonization.

View Article and Find Full Text PDF

Municipal sludge, characterized by its high-water-content and viscous texture, poses significant environmental challenges due to inefficient dewatering and poor flowability. The freeze-thaw (F/T) method is an effective and environmentally friendly pretreatment approach. It is crucial to apply rheological analysis to examine the influence of refrigeration temperature on dewatering effects and to investigate the underlying mechanisms.

View Article and Find Full Text PDF