A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Spectral analysis enhanced net (SAE-Net) to classify breast lesions with BI-RADS category 4 or higher. | LitMetric

Spectral analysis enhanced net (SAE-Net) to classify breast lesions with BI-RADS category 4 or higher.

Ultrasonics

School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China. Electronic address:

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early ultrasound screening for breast cancer reduces mortality significantly. The main evaluation criterion for breast ultrasound screening is the Breast Imaging-Reporting and Data System (BI-RADS), which categorizes breast lesions into categories 0-6 based on ultrasound grayscale images. Due to the limitations of ultrasound grayscale imaging, lesions with categories 4 and 5 necessitate additional biopsy for the confirmation of benign or malignant status. In this paper, the SAE-Net was proposed to combine the tissue microstructure information with the morphological information, thus improving the identification of high-grade breast lesions. The SAE-Net consists of a grayscale image branch and a spectral pattern branch. The grayscale image branch used the classical deep learning backbone model to learn the image morphological features from grayscale images, while the spectral pattern branch is designed to learn the microstructure features from ultrasound radio frequency (RF) signals. Our experimental results show that the best SAE-Net model has an area under the receiver operating characteristic curve (AUROC) of 12% higher and a Youden index of 19% higher than the single backbone model. These results demonstrate the effectiveness of our method, which potentially optimizes biopsy exemption and diagnostic efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2024.107406DOI Listing

Publication Analysis

Top Keywords

breast lesions
12
ultrasound screening
8
screening breast
8
lesions categories
8
ultrasound grayscale
8
grayscale images
8
grayscale image
8
image branch
8
spectral pattern
8
pattern branch
8

Similar Publications