Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Surface-enhanced Raman spectroscopy (SERS) detection platforms with high signal-to-noise ratio in the "biological-silent" region (1800-2800 cm) are presently being developed for sensing and imaging applications, overcoming the limitations of traditional SERS studies in the "fingerprint" region. Herein, a series of cyano-programmable Raman reporters (RRs) operating in the "biological-silent" region were designed based on 4-mercaptobenzonitrile derivatives and then embedded in core-shell Au@Ag nanostars using a "bottom-up" strategy to provide SERS enhancement and encapsulation protection. The approach enabled the "one-pot" readout interference-free detection of multiple bioamines (histamine, tyramine, and β-phenethylamine) based on aptamer-driven magnetic-induced technology. Three cyano-encoded SERS tags resulted in separate SERS signals for histamine, tyramine, and β-phenethylamine at 2220, 2251, and 2150 cm, respectively. A target-specific aptamer-complementary DNA competitive binding strategy allowed the formation of microscale core-satellite assemblies between FeO-based magnetic beads and the SERS tags, enabling multiple SERS signals to be observed simultaneously under a 785 nm laser excitation laser. The LODs for detection of the three bioamines were 0.61 × 10, 2.67 × 10, and 1.78 × 10 mg L, respectively. The SERS-encoded platform utilizing programmable reporters provides a fast and sensitive approach for the simultaneous detection of multiple biomarkers, paving the way for routine SERS analyses of multiple analytes in complex matrices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c02582 | DOI Listing |