Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: A high total phosphorus (P) intake has been proposed to promote endothelial dysfunction and atherosclerosis. A diet rich in foods containing P additives could contribute to an excessive intake, potentially reflected as increased concentration of P in urine.
Objectives: This study aimed to assess the intake of total dietary P, P additives, and its sources and examine their correlation with urinary P in a cross-sectional national study in Swedish adolescents.
Methods: We constructed a database of P additives and applied it to the foods consumed by 3099 participants in the representative school-based dietary survey Riksmaten Adolescents 2016-17. Intake of total dietary P and P additives were assessed using two 24-h recalls. Urinary P was analyzed in a subsample of 756 participants using inductively coupled plasma mass spectrometry. Spearman rank correlation (ρ) was used to assess the association between dietary P intake and urinary P excretion.
Results: The mean (SD) intake of total P was 1538 (±667) mg/d. Food containing P additives were consumed by 92% of adolescents and the median (IQR) intake was 49 (22-97; range: 0.01-947) mg/d, corresponding to 5% (1%-6%; range: 0%-50%) of total P. The main contributing food to P additives was cola drinks, while the main contributing food group was sausage dishes. Total P intake was weakly correlated with urinary P (ρ = 0.12; < 0.01) but not with intake of P additives.
Conclusions: Nearly, all participants consumed P additives, contributing to an average of 5% of total P intake but ranging up to 50%. The intake of total P, but not P additives, was weakly reflected in the urinary P. Access to more comprehensive information on P additives in foods would improve further evaluation of potential health consequences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264180 | PMC |
http://dx.doi.org/10.1016/j.cdnut.2024.103799 | DOI Listing |