98%
921
2 minutes
20
A mathematical description and experimental outputs exhibited that an ion chronogram from an in-tube solid-phase microextraction (SPME) device linked with mass spectrometry (in-tube-SPME-MS) generally appears as a right-skew unimodal signal with a heavy right tail. Analogous to liquid chromatography coupled with mass spectrometry (LC-MS), in-tube-SPME-MS can utilize the area under its produced ion chronogram for regression analysis and has been shown to be a potential approach for fast quantification of analyte. Different level of unimodity of signal in the ion chronogram could positively or negatively affect the choice of the area used for quantification and finally impact on analysis sensitivity and time efficiency of in-tube-SPME-MS. In the paper, we showed that different in-tube SPME design choices and elution experimental setups produce ion chronograms with controllable varying unimodal peak shape patterns. An improved mathematical model was built based on the plate theory of chromatography and the Van Deemter equation to quantitatively describe the elution process from in-tube-SPME device. A computer simulation was implemented to predict ion chronograms and the results were compared with experimental ion chronograms to show the effectiveness of the model. An optimization framework was further presented based on the model to identify optimal device designs (length and diameter of device) and experimental parameters (flow rate) to track targeted ion chronograms with "desired" peak shape patterns. Empirical elution experiments with the in-tube SPME devices adopting optimized geometric parameters and optimal experimental setups confirmed the consistency between the experimental ion chronograms and the numerical simulations to a certain level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2024.465167 | DOI Listing |
Talanta
March 2025
BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brazil. Electronic address:
J Chromatogr A
August 2024
Hanbot Institute, Yovole Networks Inc., Shanghai 200433, China. Electronic address:
A mathematical description and experimental outputs exhibited that an ion chronogram from an in-tube solid-phase microextraction (SPME) device linked with mass spectrometry (in-tube-SPME-MS) generally appears as a right-skew unimodal signal with a heavy right tail. Analogous to liquid chromatography coupled with mass spectrometry (LC-MS), in-tube-SPME-MS can utilize the area under its produced ion chronogram for regression analysis and has been shown to be a potential approach for fast quantification of analyte. Different level of unimodity of signal in the ion chronogram could positively or negatively affect the choice of the area used for quantification and finally impact on analysis sensitivity and time efficiency of in-tube-SPME-MS.
View Article and Find Full Text PDFTalanta
May 2024
School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
Modern solid phase microextraction (SPME) device linked with mass spectrometry (SPME-MS) has evolved from producing ion chronogram as flat noisy signal to as unimodal-like signal. We designed a SPME device, which is closer in morphology to LC column, linked it with a miniature mass spectrometer (SPME-Mini MS), and proposed a mathematical model that elution of compound from the SPME device is equivalent to overlay of elution of the compound from the infinite LC columns with the lengths between 0 and the length of the device and it can generate an ion chronogram as right-skew unimodal signal. Rhodamine B as analyte was used for experimental verification and its unimodal signal was used to fit the parameters of a computer simulation program based on the model.
View Article and Find Full Text PDFAnn Bot
November 2023
Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA.
Background And Aims: CAM photosynthesis is hypothesized to have evolved in atmospheres of low CO2 concentration in recent geological time because of its ability to concentrate CO2 around Rubisco and boost water use efficiency relative to C3 photosynthesis. We assess this hypothesis by compiling estimates of when CAM clades arose using phylogenetic chronograms for 73 CAM clades. We further consider evidence of how atmospheric CO2 affects CAM relative to C3 photosynthesis.
View Article and Find Full Text PDFAnal Chem
March 2021
Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.
Concomitant species that appear at the same or very similar times in a mass-spectral analysis can clutter a spectrum because of the coexistence of many analyte-related ions (.., molecular ions, adducts, fragments).
View Article and Find Full Text PDF