98%
921
2 minutes
20
We and others have previously shown that TAZ plays a tumor suppressive role in multiple myeloma. However, recent reports suggest that molecular crosstalk between the myeloma cells and bone marrow stromal components contributes to the myeloma cell survival and drug resistance. These reports further point to reciprocal interaction via adhesion molecules as the most prominent mechanism of intercellular crosstalk between myeloma cells and bone marrow mesenchymal stromal cells (BM-MSCs). YAP/TAZ silencing/expression has been shown to correlate across all cancers with a set of adhesion/extracellular matrix proteins. Therefore, we hypothesized that TAZ may regulate myeloma cell interaction with BM stromal cells by influencing the expression of distinct cell adhesion signatures. We used previously established TAZ myeloma cell line models, including DELTA47-pLENTI or TAZ knockout DELTA47 cells cocultured with or without BM-MSCs, as our study models. Using RNA sequencing analysis, we performed the first comprehensive screen for cell adhesion-related transcriptional targets of TAZ in multiple myeloma (MM). In doing so, we uncovered an enrichment of cell adhesion-related genes in TAZ knockout DELTA47 cells relatively to pLENTI-DELTA47 cells, including 11 genes with log2 fold change > 2 (p < 0.05), namely, ANXA1, ADGRL2, NCAM1, NCAM2, ADGRL3, CXADR, ALCAM, JAM2, KIRREL1, KIRREL2, and ADGRG7, suggesting possible relationship with TAZ. We validated ANXA1 as a bona fide target of TAZ in MM. We show that TAZ represses myeloma cell migration and interaction with BM-MSCs by transcriptionally downregulating ANXA1 expression via TEAD-dependent mechanism. Our data provide new insights into the understanding of the role of TAZ in the intercellular communication signals between myeloma cells and BM-MSCs. Our findings also suggest that ANXA1 represents a putative cell adhesion target to attenuate BM-MSC driven, tumor-promoting interaction with myeloma cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exphem.2024.104282 | DOI Listing |
Ann Hematol
September 2025
Hematology and Transplant Center, University Hospital"San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy.
Functional high risk multiple myeloma (FHRMM) remains a challenging entity with poor outcomes and limited survival, and there is no international consensus on optimal second-line therapeutic strategies in relapsed/refractory patients. In this multicenter real-world retrospective study, we investigated clinical characteristics and outcomes of a total of 62 FHRMM patients previously treated with a first-line daratumumab-based quadruplet regimen or who relapsed within 12 months after frontline autologous stem cell transplantation (ASCT). In our cohort, the overall response rate was 61%, with 42% of patients achieving a very good partial response (VGPR) or better.
View Article and Find Full Text PDFBlood
September 2025
The University of Texas MD Anderson Cancer Center, Houston, Texas, United States.
Isatuximab is an IgG1k monoclonal antibody that binds with high affinity to CD38 expressed on plasma cells. Anti-CD38 antibodies have shown efficacy as monotherapy and in combination in a variety of settings for patients with multiple myeloma and light chain (AL) amyloidosis. This multi-center, cooperative group phase 2 trial was designed to evaluate hematologic response, organ response, and safety of isatuximab monotherapy for the treatment of relapsed AL amyloidosis.
View Article and Find Full Text PDFJ Clin Invest
September 2025
Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, United States of America.
B-lymphocytes play major adaptive immune roles, producing antibody and driving T-cell responses. However, how immunometabolism networks support B-cell activation and differentiation in response to distinct receptor stimuli remains incompletely understood. To gain insights, we systematically investigated acute primary human B-cell transcriptional, translational and metabolomic responses to B-cell receptor (BCR), Toll-like receptor 9 (TLR9), CD40-ligand (CD40L), interleukin-4 (IL4) or combinations thereof.
View Article and Find Full Text PDFAnn Hematol
September 2025
Excellence Center for Comprehensive Cancer (ECCCC), King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
Despite therapeutic advances, multiple myeloma (MM) remains incurable, especially in relapsed/refractory (R/R) cases. B-cell maturation antigen (BCMA) is a key target for novel immunotherapies, including chimeric antigen receptor T-cell (CAR-T) therapies and bispecific T-cell engagers (BiTEs), which vary in efficacy, toxicity, and accessibility. To compare the efficacy and safety of BCMA-directed CAR-T therapies and BiTEs in R/R MM through a systematic review and meta-analysis.
View Article and Find Full Text PDF