98%
921
2 minutes
20
three-dimensional (3D) models are better able to replicate the complexity of real organs and tissues than 2D monolayer models. The human endometrium, the inner lining of the uterus, undergoes complex changes during the menstrual cycle and pregnancy. These changes occur in response to steroid hormone fluctuations and elicit crosstalk between the epithelial and stromal cell compartments, and dysregulations are associated with a variety of pregnancy disorders. Despite the importance of the endometrium in embryo implantation and pregnancy establishment, there is a lack of models that recapitulate tissue structure and function and as such a growing demand for extracellular matrix hydrogels that can support 3D cell culture. To be physiologically relevant, an model requires mechanical and biochemical cues that mimic those of the ECM found in the native tissue. We report a semisynthetic gelatin methacryloyl (GelMA) hydrogel that combines the bioactive properties of natural hydrogels with the tunability and reproducibility of synthetic materials. We then describe a simple protocol whereby cells can quickly be encapsulated in GelMA hydrogels. We investigate the suitability of GelMA hydrogel to support the development of an endometrial model by culturing the main endometrial cell types: stromal cells and epithelial cells. We also demonstrate how the mechanical and biochemical properties of GelMA hydrogels can be tailored to support the growth and maintenance of epithelial gland organoids that emerge upon 3D culturing of primary endometrial epithelial progenitor cells in a defined chemical medium. We furthermore demonstrate the ability of GelMA hydrogels to support the viability of stromal cells and their function measured by monitoring decidualization in response to steroid hormones. This study describes the first steps toward the development of a hydrogel matrix-based model that recapitulates the structure and function of the native endometrium and could support applications in understanding reproductive failure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299152 | PMC |
http://dx.doi.org/10.1021/acsami.4c08763 | DOI Listing |
Leukemia
September 2025
University Children's Hospital Zurich, Pediatric Oncology and Children's Research Center, Zurich, Switzerland.
Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA.
Individuals with progressive liver failure risk dying without liver transplantation. However, our understanding of why regenerative responses are disrupted in failing livers is limited. Here, we perform multiomic profiling of healthy and diseased human livers using bulk and single-nucleus RNA- and ATAC-seq.
View Article and Find Full Text PDFCell Signal
September 2025
Department of Orthopedics, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China. Electronic address:
Bone morphogenetic proteins (BMPs) are effective for treating various orthopedic conditions and are widely used clinically. However, their therapeutic efficacy is limited in osteoporosis patients. Iron overload represents a key risk factor for osteoporosis, inducing ferroptosis and suppressing the osteogenic differentiation of bone marrow stromal cells (BMSCs).
View Article and Find Full Text PDFExp Cell Res
September 2025
Section of Pharmacology, Department of Internal Medicine, University of Genova, 16132, Genova, Italy; IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy. Electronic address:
Organoids are 3D structures in which stem, progenitor and differentiated cells spontaneously assemble into structures resembling the original tissue. Endometrial organoids, developed from tissue fragments, are genetically stable and responsive to hormone stimulation acquiring a hallow lumen, secretory activity and apico-basal polarity. However, they show some limitations in mimicking the midluteal endometrium since they lack endothelial, immune, and stromal cells, thus providing limited information about epithelial-stromal interactions.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
September 2025
Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China; Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China; National Regional Medical Cente
Pancreatic ductal adenocarcinoma (PDAC) exhibits persistent resistance to immunotherapy, with a 5-year survival rate around 10 %. The CD39-CD73-adenosine axis emerges as a critical mediator of immune evasion in PDAC, generating pathologically elevated adenosine concentrations that systematically suppress anti-tumor immunity. This purinergic pathway operates through sequential ATP hydrolysis by CD39 and CD73 ectonucleotidases, producing adenosine that engages four G-protein-coupled receptors (A1, A2A, A2B, A3) to orchestrate comprehensive immunosuppression.
View Article and Find Full Text PDF