Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: For patient management and prognosis, accurate assessment of mediastinal lymph node (LN) status is essential. This study aimed to use machine learning approaches to assess the status of confusing LNs in the mediastinum using positron emission tomography/computed tomography (PET/CT) images; the results were then compared with the diagnostic conclusions of nuclear medicine physicians.
Methods: A total of 509 confusing mediastinal LNs that had undergone pathological assessment or follow-up from 320 patients from three centres were retrospectively included in the study. LNs from centres I and II were randomised into a training cohort (N=324) and an internal validation cohort (N=81), while those from centre III patients formed an external validation cohort (N=104). Various parameters measured from PET and CT images and extracted radiomics and deep learning features were used to construct PET/CT-parameter, radiomics, and deep learning models, respectively. Model performance was compared with the diagnostic results of nuclear medicine physicians using the area under the curve (AUC), sensitivity, specificity, and decision curve analysis (DCA).
Results: The coupled model of gradient boosting decision tree-logistic regression (GBDT-LR) incorporating radiomic features showed AUCs of 92.2% [95% confidence interval (CI), 0.890-0.953], 84.6% (95% CI, 0.761-0.930) and 84.6% (95% CI, 0.770-0.922) across the three cohorts. It significantly outperformed the deep learning model, the parametric PET/CT model and the physician's diagnosis. DCA demonstrated the clinical usefulness of the GBDT-LR model.
Conclusions: The presented GBDT-LR model performed well in evaluating confusing mediastinal LNs in both internal and external validation sets. It not only crossed radiometric features but also avoided overfitting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250303 | PMC |
http://dx.doi.org/10.21037/qims-24-100 | DOI Listing |