Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study focuses on predicting mechanical fatigue in excavator turntables, critical components susceptible to failure due to variable operational loads. While conventional methods like finite element analysis(FEA) and multiaxial fatigue criteria have been used, they are limited by the complexity and cost of obtaining real operational load spectra. To address this challenge, our research presents a comprehensive approach that integrates multi-body dynamics modeling, finite element analysis, and MATLAB-based fatigue life prediction systems. Our methodology involves creating a finite element model for stress analysis, synthesizing load spectra from operational data, and utilizing Weibull distribution to analyze load magnitude probabilities. Subsequently, MATLAB imported the load spectrum and built the fatigue prediction framework to finalize the analysis. Furthermore, we have fully open-sourced our code on an open platform, incorporating default load profiles and predictive models within the code. Key findings pinpoint areas prone to stress concentration and fatigue. Key findings identify stress concentration areas and fatigue-prone regions, providing valuable insights for design optimization and durability improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252742PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e33126DOI Listing

Publication Analysis

Top Keywords

finite element
16
fatigue life
8
life prediction
8
excavator turntables
8
multi-body dynamics
8
element analysis
8
load spectra
8
key findings
8
stress concentration
8
fatigue
6

Similar Publications

Objective: Due to its inherent high instability, the selection of fixation strategies for unilateral Denis type II sacral fractures remains a controversial challenge in the field of traumatic orthopedics. This study focuses on unilateral Denis type II sacral fractures. By applying three different fixation methods, it aims to explore their biomechanical properties and provide a theoretical basis for optimizing clinical fixation protocols.

View Article and Find Full Text PDF

Two-Phase Material Shape Optimization of an Additively Manufactured Integrated Metal and Ceramic Resin Implant-Supported Dental Crown.

Int J Numer Method Biomed Eng

September 2025

Department of Industrial and Manufacturing Engineering, Pennsylvania State University, University Park, Pennsylvania, USA.

The screw-retained implant-supported crown is a durable, aesthetic restoration, but debonding between the crown and abutment remains a challenge to survivability. The purpose of this work was to devise an abutment shape that can be embedded into the crown while the crown is being additively manufactured. The result was a mechanically retained, no-adhesive abutment and crown unit that is mounted to the implant fixture.

View Article and Find Full Text PDF

Impact of osteotomy angle on bone failure risk in a modified pull-through approach: a finite element analysis.

BMC Oral Health

September 2025

Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.

Background: A modified pull-through approach represents a promising treatment strategy to access tumors in the posterior oral cavity. The design of the wedge osteotomy plays a key role in preserving postoperative mechanical stability while enabling surgical access. However, the optimal osteotomy design to reduce fracture risk remains unclear.

View Article and Find Full Text PDF

Objectives: Cervical cancer is a serious threat to women's life and health and has a high mortality rate. Colposcopy is an important method for early clinical cervical cancer screening, but the traditional vaginal dilator has problems such as discomfort in use and cumbersome operation. For this reason, this study aims to design an intelligent vaginal dilatation system to automate colposcopy and enhance patient comfort.

View Article and Find Full Text PDF

Study of a near-cortical over-drilling technique on plate constructs with a conical locking system in a rabbit femoral fracture using a finite element model.

Med Eng Phys

October 2025

Centre for Simulation in Bioengineering, Biomechanics and Biomaterials (CS3B), Department of Mechanical Engineering, School of Engineering of Bauru, São Paulo State University (UNESP), Bauru, São Paulo, Brazil. Electronic address:

This study aimed to evaluate the near-cortical over-drilling technique on the mechanical behaviour of bone-plate constructs in a rabbit transverse femoral fracture. In vitro biomechanical testing and finite element (FE) models were used for analyses. Rabbits' bones (n = 14) were divided into two groups: G1 - without near-cortical over-drilling, and G2 - with near-cortical over-drilling.

View Article and Find Full Text PDF