Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Liamocins are molecules with a polyol lipid structure produced by rare strains of Aureobasidium pullulans. In recent years, liamocins have attracted attention due to their antibacterial, anticancer and surface-active properties, and promising potential applications have been identified in the food, agriculture, medical and pharmaceutical industries. This study is the first to investigate the effects of different carbon and nitrogen sources on the growth and liamocin production kinetics of A. pullulans NBRC 100716 strain. This strain was selected among six different A. pullulans strains whose liamocin productions were tested by us for the first time. In fermentations carried out in shaking water baths, the carbon source that most supported the liamocin production of this strain was fructose, and the nitrogen source was peptone-yeast extract combination. In the medium containing fructose and the peptone-yeast extract mixture, A. pullulans NBRC 100716 produced 4.26 g liamocin L. The specific liamocin production rate (qp) of the strain in this medium was 0.0090 g liamocin/g mo.h. This study is also the first to produce liamocin with a fructophilic A. pullulans strain. Present findings in this research also demonstrated the excellent biosurfactant capacity of the liamocin produced by this strain. The obtained liamocin reduced the water surface tension to a degree that can compete with synthetic surfactants. Furthermore, this is the first report to reveal that the fatty acid profile of liamocin obtained from A. pullulans NBRC 100716 contains an appreciable amount of unsaturated fatty acids and is similar to the composition of vegetable oil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-024-04065-6 | DOI Listing |