98%
921
2 minutes
20
Darwin proposed that blushing-the reddening of the face owing to heightened self-awareness-is 'the most human of all expressions'. Yet, relatively little is known about the underlying mechanisms of blushing. Theories diverge on whether it is a rapid, spontaneous emotional response that does not involve reflection upon the self or whether it results from higher-order socio-cognitive processes. Investigating the neural substrates of blushing can shed light on the mental processes underlying blushing and the mechanisms involved in self-awareness. To reveal neural activity associated with blushing, 16-20 year-old participants ( = 40) watched pre-recorded videos of themselves (versus other people as a control condition) singing karaoke in a magnetic resonance imaging scanner. We measured participants' cheek temperature increase-an indicator of blushing-and their brain activity. The results showed that blushing is higher when watching oneself versus others sing. Those who blushed more while watching themselves sing had, on average, higher activation in the cerebellum (lobule V) and the left paracentral lobe and exhibited more time-locked processing of the videos in early visual cortices. These findings show that blushing is associated with the activation of brain areas involved in emotional arousal, suggesting that it may occur independently of higher-order socio-cognitive processes. Our results provide new avenues for future research on self-awareness in infants and non-human animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251765 | PMC |
http://dx.doi.org/10.1098/rspb.2024.0958 | DOI Listing |
Sci Adv
September 2025
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China.
Insects, unlike vertebrates, use heteromeric complexes of odorant receptors and co-receptors for olfactory signal transduction. However, the secondary messengers involved in this process are largely unknown. Here, we use the olfactory signal transduction of the aggregation pheromone 4-vinylanisole (4VA) as a model to address this question.
View Article and Find Full Text PDFSoc Cogn Affect Neurosci
September 2025
Faculty of Health and Wellness, City University of Macau, Macau 999078, P.R. China.
Emotional contagion is an important aspect of social interaction. Traditional theories suggest that it relies on mimicry of facial or emotional movements. To address the question of whether there is a distinction between emotional contagion and emotional mimicry, we conducted a meta-analysis using the ALE algorithm to identify brain regions activated by the two tasks.
View Article and Find Full Text PDFiScience
September 2025
Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
Goal-directed behavior requires adjusting cognitive control, both in preparation for and in reaction to conflict. Theta oscillations and population activity in dorsomedial prefrontal cortex (dmPFC) and dorsolateral PFC (dlPFC) are known to support reactive control. Here, we investigated their role in proactive control using human intracranial electroencephalogram (EEG) recordings during a Stroop task that manipulated conflict expectations.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Physiology, University of Bern, Bern, Switzerland.
Spiking neural networks (SNNs) inherently rely on the timing of signals for representing and processing information. Augmenting SNNs with trainable transmission delays, alongside synaptic weights, has recently shown to increase their accuracy and parameter efficiency. However, existing training methods to optimize such networks rely on discrete time, approximate gradients, and full access to internal variables such as membrane potentials.
View Article and Find Full Text PDFCommun Biol
September 2025
Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK.
Primate lateral intraparietal area (LIP) has been directly linked to perceptual categorization and decision-making. However, the intrinsic LIP circuitry that gives rise to the flexible generation of motor responses to sensory instruction remains unclear. Using retrograde tracers, we delineate two distinct operational compartments based on different intrinsic connectivity patterns of dorsal and ventral LIP.
View Article and Find Full Text PDF