Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Transcranial ultrasonic stimulation (TUS) has the potential to usher in a new era for human neuroscience by allowing spatially precise and high-resolution non-invasive targeting of both deep and superficial brain regions. Currently, fundamental research on the mechanisms of interaction between ultrasound and neural tissues is progressing in parallel with application-focused research. However, a major hurdle in the wider use of TUS is the selection of optimal parameters to enable safe and effective neuromodulation in humans. In this paper, we will discuss the major factors that determine both the safety and efficacy of TUS. We will discuss the thermal and mechanical biophysical effects of ultrasound, which underlie its biological effects, in the context of their relationships with tunable parameters. Based on this knowledge of biophysical effects, and drawing on concepts from radiotherapy, we propose a framework for conceptualising TUS dose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247917 | PMC |