SIL1 improves cognitive impairment in APP23/PS45 mice by regulating amyloid precursor protein processing and Aβ generation.

Zool Res

Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

SIL1, an endoplasmic reticulum (ER)-resident protein, is reported to play a protective role in Alzheimer's disease (AD). However, the effect of SIL1 on amyloid precursor protein (APP) processing remains unclear. In this study, the role of SIL1 in APP processing was explored both and . In the experiment, SIL1 was either overexpressed or knocked down in cells stably expressing the human Swedish mutant APP695. In the experiment, AAV-SIL1-EGFP or AAV-EGFP was microinjected into APP23/PS45 mice and their wild-type littermates. Western blotting (WB), immunohistochemistry, RNA sequencing (RNA-seq), and behavioral experiments were performed to evaluate the relevant parameters. Results indicated that SIL1 expression decreased in APP23/PS45 mice. Overexpression of SIL1 significantly decreased the protein levels of APP, presenilin-1 (PS1), and C-terminal fragments (CTFs) of APP and . Conversely, knockdown of SIL1 increased the protein levels of APP, β-site APP cleavage enzyme 1 (BACE1), PS1, and CTFs, as well as APP mRNA expression in 2EB2 cells. Furthermore, SIL1 overexpression reduced the number of senile plaques in APP23/PS45 mice. Importantly, Y-maze and Morris Water maze tests demonstrated that SIL1 overexpression improved cognitive impairment in APP23/PS45 mice. These findings indicate that SIL1 improves cognitive impairment in APP23/PS45 mice by inhibiting APP amyloidogenic processing and suggest that SIL1 is a potential therapeutic target for AD by modulating APP processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298678PMC
http://dx.doi.org/10.24272/j.issn.2095-8137.2023.363DOI Listing

Publication Analysis

Top Keywords

app23/ps45 mice
24
sil1
12
cognitive impairment
12
impairment app23/ps45
12
app processing
12
app
9
sil1 improves
8
improves cognitive
8
amyloid precursor
8
precursor protein
8

Similar Publications

Disruption of BAG3-mediated BACE1 stabilization alleviates neuropathology and memory deficits in a mouse model of Alzheimer's disease.

Sci Adv

May 2025

Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and C

β-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is the rate-limiting enzyme for amyloid-β (Aβ) generation and is considered promising drug target for Alzheimer's disease (AD). The co-chaperone BAG3 (Bcl-2-associated athanogene 3) plays an important role in maintaining intracellular protein homeostasis by regulating heat shock protein 70 (HSP70). Here, we reported that BAG3 expression was significantly elevated in AD.

View Article and Find Full Text PDF

ELK1 inhibition alleviates amyloid pathology and memory decline by promoting the SYVN1-mediated ubiquitination and degradation of PS1 in Alzheimer's disease.

Exp Mol Med

May 2025

Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and C

ELK1 is a member of the E-twenty-six transcription factor family and is usually activated by phosphorylation at Ser383 and Ser389 by extracellular signal-regulated kinase 1/2 (ERK1/2). Dysregulation of ERK1/2 is involved in Alzheimer's disease (AD)-related neuropathogenesis and cognitive impairments. However, the role of ELK1 in AD pathogenesis remains unclear.

View Article and Find Full Text PDF

KIF9 Ameliorates Neuropathology and Cognitive Dysfunction by Promoting Macroautophagy in a Mouse Model of Alzheimer's Disease.

Aging Cell

May 2025

Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and C

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting the elderly. The imbalance of protein production and degradation processes leads to the accumulation of misfolded and abnormally aggregated amyloid-beta (Aβ) in the extracellular space and forms senile plaques, which constitute one of the most critical pathological hallmarks of AD. KIF9, a member of the kinesin protein superfamily, mediates the anterograde transport of intracellular cargo along microtubules.

View Article and Find Full Text PDF

APP lysine 612 lactylation ameliorates amyloid pathology and memory decline in Alzheimer's disease.

J Clin Invest

January 2025

Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and C

Article Synopsis
  • Posttranslational modification (PTM) of the amyloid precursor protein (APP), particularly lactylation, is linked to the development of Alzheimer's disease (AD), but its specific role is still unclear.
  • Research showed reduced APP lactylation in AD patients and models, identifying lysine 612 as a key lactylation site, which affects APP processing and Aβ generation.
  • A lactyl-mimicking mutant enhanced APP trafficking and reduced cognitive decline by modifying APP interactions, suggesting that targeting APP lactylation may offer new therapeutic avenues for Alzheimer's disease.
View Article and Find Full Text PDF

Alpha-lipoic acid alleviates cognitive deficits in transgenic APP23/PS45 mice through a mitophagy-mediated increase in ADAM10 α-secretase cleavage of APP.

Alzheimers Res Ther

July 2024

Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Coope

Background: Alpha-lipoic acid (ALA) has a neuroprotective effect on neurodegenerative diseases. In the clinic, ALA can improve cognitive impairments in patients with Alzheimer's disease (AD) and other dementias. Animal studies have confirmed the anti-amyloidosis effect of ALA, but its underlying mechanism remains unclear.

View Article and Find Full Text PDF